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Abstract

The oxidation of Earth’s atmosphere is coupled to the net sequestration of organic matter, which is related to the relative

fractions of organic carbon ( forg) and carbonate ( fcarb) buried in marine sediments. These fractions can be inferred from carbon

isotope data. We present bulk sediment d13C records of carbonate (d13Ccarb) and organic carbon (d13Corg) with a compilation of

evolutionary trajectories of major eucaryotic phytoplankton for the past 205 million years. Our analysis indicates that changes in

phytoplankton community structure, coupled with the opening of the Atlantic Ocean basin and global sea-level rise, increased

the efficiency of organic carbon burial beginning in the Early Jurassic; in turn, this organic carbon burial increased the oxidation

state of Earth’s surface while drawing down atmospheric CO2 levels (assuming no substantial negative feedbacks). The net

oxidation and CO2 drawdown appear to be related to the opening phase of the current Wilson cycle, where the newly formed

passive plate margins store organic matter for hundreds of millions of years. This process should reverse during the closing

phase of the Wilson cycle, when the continents reassemble and the Atlantic Ocean basin closes. The associated oxidation and

storage of organic matter have contributed to the long-term depletion of CO2, which was a key factor that selected C4

photosynthetic pathways in marine and terrestrial ecosystems in the latter part of the Cenozoic; these pathways increasingly

influenced d13Corg, and ultimately contributed to the reversal of the long-term trend in d13Ccarb.

D 2005 Elsevier B.V. All rights reserved.

Keywords: carbon isotopes; organic carbon burial; oxidation state; Wilson cycle; phytoplankton
0025-3227/$ - see front matter D 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.margeo.2004.08.005

T Corresponding author. Tel.: +1 732 445 3445; fax: +1 732 445

3374.

E-mail address: mimikatz@rci.rutgers.edu (M.E. Katz).
1. Introduction

The d13C signature of the ocean’s mobile carbon

reservoir is controlled by the d13C signatures and

fluxes of carbon sources and sinks on timescales longer

than the residence time of carbon in the oceans (~180
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kyr). The relationship between the sources (input) and

sinks (output) of the geological carbon cycle is

typically quantified using the standard equation that

provides the backbone of carbon isotope models (e.g.,

Berner and Kothavala, 2001; Kump and Arthur, 1999):

fw4d
13Cw þ fv4d

13Cv ¼ fcarb4d
13Ccarb þ forg4d

13Corg

ð1Þ

where f=fraction, w=weathering, v=volcanic/hydro-

thermal, carb=carbonate, and org=organic carbon.

Carbon is supplied to the ocean through outgassing

from hydrothermal/volcanic activity and from erosion

of continental rocks, while carbon is removed from the

ocean through deposition of marine sediments. Over

time, these sediments integrate large kinetic fractiona-

tions from photosynthetic reduction of CO2 to organic

matter with small thermodynamic fractionations from

ion exchange reactions in carbonate precipitation. The

relative fractions of carbonate and organic carbon

buried in marine sediments are inferred from d13C

records of carbonates and organic matter in sedimen-

tary rocks (Hayes et al., 1999; Kump and Arthur,

1999). Changes in marine d13Ccarb and d13Corg

through time serve as archives of changes in carbon

sources and sinks (for detailed summaries of the

carbon cycle, see Hayes et al., 1999; Kump and

Arthur, 1999).

In this study, we document and discuss long-term

trends (tens to hundreds of million years) in d13Ccarb

and d13Corg records for the Jurassic–Cenozoic using

both new and published data. We interpret the long-

term trends based on GEOCARB III (Berner and

Kothavala, 2001) model simulations that use these

d13Ccarb and d13Corg data, with additional information

from comparisons with phytoplankton diversity

records and geological proxies. Our goal is to

investigate the geological and biological processes

that interacted through time to produce these records

of the global carbon cycle. A series of sensitivity tests

based on Eq. (1) allows us to place constraints on

potential variations in the carbon sources and sinks.

Each of these sensitivity tests is designed to predict

the maximum response to changing a single variable,

and therefore does not take into account potential

feedbacks through time that may have muted this

response.
2. Methods

2.1. Site and sample selection

We measured d13Ccarb on bulk sediment samples

from Jurassic and Cretaceous sections (Figs. 1 and

2; Appendix A, web-archived at http://mychronos.

chronos.org/~miriamkatz/20040728/). Bulk sediment

samples were analyzed because they best characterize

the inorganic carbon outflow from the ocean/atmos-

phere/biosphere, and provide the average d13C of the

total carbonate produced and preserved in the marine

system (Shackleton, 1987). This is the signal that is

needed for the purposes of this paper; therefore, we

use bulk sediment isotope records as a proxy for the

average d13C of the inorganic output, allowing us to

monitor long-term changes in the global carbon cycle

through time (e.g., Shackleton, 1987). Although the

mobile carbon reservoir in the deep ocean is

substantially larger (36700�1015 g today) than the

carbon reservoirs in the surface ocean and atmosphere

(670�1015 g and 720�1015 g, respectively) (e.g.,

(Falkowski and Raven, 1997), relatively little sedi-

mentary carbonate is produced in deepwaters. There-

fore, a d13C record generated from deepwater benthic

foraminifera does not provide a record of the average

d13C of the total sedimentary carbonate preserved in

the marine system. Rather, d13C analyses of benthic

foraminifera record dissolved inorganic carbon (DIC)

in deepwaters, and can be used to reconstruct deep-

water circulation changes through time (e.g., Miller et

al., 1987; Zachos et al., 2001); such a reconstruction is

not the goal of this paper. A productivity signal can be

extracted from benthic foraminiferal d13C only by

comparing it with planktonic foraminiferal d13C from

phosphate-free surface waters. Even then, it is only a

proxy for the carbon to phosphorous ratio (C/P)

(Broecker and Peng, 1982), which is proportional to

productivity only as a function of stability/mixing.

This would be impossible to do for the Jurassic–

Cenozoic because planktonic foraminifera did not

evolve until the Cretaceous and there is a lack of well-

enough preserved foraminifera for a continuous

Jurassic–Cretaceous isotope record.

Similarly, we do not use d13Ccarb records generated

from specific organisms (e.g., belemnites, oysters, and

foraminifera), which reflect the different environ-

ments where each of those organisms lived (e.g.,

http://mychronos.chronos.org/~miriamkatz/20040728/
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Fig. 1. Composite bulk sediment d13C record for the Jurassic through the Cenozoic (see Methods for site selection criteria). Mesozoic d13C data

(this study) and Cenozoic d13C data (Shackleton and Hall, 1984) are primarily from open ocean Atlantic Deep Sea Drilling Project (DSDP)

boreholes (see Methods). Data (Appendix A) are web-archived (http://www.mychronos.chronos.org/~miriamkatz/20040728/). Site locations are

shown in a series of paleogeographic reconstructions at 50 myr intervals (http://www.odsn.de/odsn/index.html). We use least squares regression

(95% confidence interval) to determine the long-term trends in d13Ccarb, where x=age and y=d13Ccarb: (1) Dd13Ccarb=�2.52x for 0–15 Ma:

y=(0.168F0.024)x+(0.049F0.17), R=0.89; (2) Dd13Ccarb=1.1x for 16–205 Ma: y=(�0.006F0.001)x+(2.64F0.12), R=0.38. We note that

including the Lower Jurassic section (Mochras borehole data) in the linear regression produces a lower rate of increase in d13Ccarb, which yields

a more conservative estimate of the magnitude of the long-term increase. We use a singular spectrum analysis to highlight the long-term d13Ccarb

variations (see Methods).
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nearshore surface ocean vs. deep ocean bottom water)

rather than the average d13Ccarb output from the

system. Furthermore, the d13C values can be compli-

cated by the vital effects of specific organisms.

We rely on open ocean Atlantic Deep Sea Drilling

Project (DSDP) boreholes (Fig. 1) with well-docu-

mented magnetobiostratigraphies that provide excel-

lent age control and minimize the risk of undetected

unconformities (Appendix B, web-archived at http://

mychronos.chronos.org/~miriamkatz/20040728/).

Even our oldest DSDP location (Site 534) was ~2500

m deep in the Middle Jurassic (Sheridan et al., 1983).

Using open ocean locations circumvents problems

that may be encountered in analyzing epicontinental

sections, including unconformities associated with

sea-level changes and local overprint of geochemical

signals (e.g., Smith et al., 2001). However, it was

necessary to use an epicontinental section for the older

record because there is little to no pre-Middle Jurassic

ocean floor left. We chose the Mochras borehole

(Wales) because it spans the entire Lower Jurassic at a

single location and its lithology and biostratigraphy

are well documented (Ivimey-Cook, 1971; Woodland,

1971). There are several data gaps in our record: 1) no

Atlantic DSDP/ODP borehole contains conclusive in

situ Turonian sediments; and 2) no Aalenian–Batho-

nian sections were available for analysis, nor were

published bulk sediment d13Ccarb records with firm

age constraints available.

2.2. Age models

Age models for the isotope data were developed

using magnetobiostratigraphy from published records

(Appendix B, web-archived at http://www.mychronos.

chronos.org/~miriamkatz/20040728/). Ages are cali-

brated to the time scales of Berggren et al. (1995;

Cenozoic) and Gradstein et al. (1995; Mesozoic).

Ages are assigned to data by interpolating between

data and across time intervals that are substantially

longer than the sample spacing, with the potential to

introduce a margin of error when multiple datasets are

combined within a single time interval. We minimize

this potential error by using a composite record

(individual records stacked one on top of the other)

rather than a compilation (overlay of multiple records)

to insure that the chronological integrity of our

records is intact.
2.3. Stable isotope analyses

Stable isotope analyses on Mesozoic samples were

performed in the Stable Isotope Laboratory at Rutgers

University using a multi-prep peripheral device and

analyzed on an Optima mass spectrometer. Samples

were reacted in 100% phosphoric acid at 90 8C for 13

min. Values are reported vs. V-PDB through the

analysis of an internal standard calibrated with NBS-

19 (1.95x for d13C) as reported by Coplen et al.

(1983) and Coplen (1995).

2.4. Statistical analysis

d13C data were linearly interpolated (100 kyr

sampling interval) and analyzed using the SSA-MTM

Toolkit from http://www.atmos.ucla.edu/tcd/ssa/ (Ghil

et al., 2002). Singular Spectrum Analysis (SSA) was

performed using a 205 point (~20 myr) window with

the Broomhead and King method for constructing the

covariance matrix; the six highest variance compo-

nents were added together to reconstruct the long-term

d13C variations shown by the curve in Fig. 1.

In addition, we use least squares regression (95%

confidence interval) to determine the long-term trends

in d13Ccarb and d13Corg. We note that including the

Lower Jurassic section (Mochras borehole data) in the

linear regression produces a lower rate of increase in

d13Ccarb, which yields a more conservative estimate of

the magnitude of the long-term change.
3. Results and discussion

3.1. Carbon isotope records

We constructed a composite bulk sediment d13Ccarb

record using new Mesozoic data (this study) and

published Cenozoic data (Shackleton and Hall, 1984)

(Fig. 1). Comparisons of the new Mesozoic data with

shorter-duration published bulk sediment d13C
records establish that the composite curve records

global d13C changes in the Cretaceous (Fig. 2). Our

Jurassic record is derived from the Tethys and the

small, nascent Atlantic, with no published bulk

sediment d13C records from open ocean settings for

comparison. Therefore, we cannot conclusively estab-

lish that our Jurassic record reflects a global signal;

http://mychronos.chronos.org/miriamkatz/20040728/
http://www.mychronos.chronos.org/miriamkatz/20040728
http://www.atmos.ucla.edu/tcd/ssa/


M.E. Katz et al. / Marine Geology 217 (2005) 323–338328
nonetheless, we note that our data trends are

consistent with the compilation of Veizer et al.

(1999). Episodes and geographic distribution of

elevated organic carbon deposition are indicated in

blue on the chronostratigraphic column (as summar-

ized in Arthur et al., 1984; Leckie et al., 2002;

Weissert et al., 1998).

Most of the shorter-term events recorded in our

data have been well documented in other publications,

such as: 1) extended periods (~5–10 myr) of elevated

d13C values (e.g., Early Jurassic, Late Jurassic,

Aptian–early Albian, Paleocene–early Eocene); 2)

rapid, transient d13C decreases (Toarcian, Oxfordian,

Tithonian, Albian, Aptian, Cenomanian/Turonian,

Cretaceous/Tertiary boundary, and Paleocene/Eocene

boundary); and 3) short-lived (]1 myr) d13C
increases associated with the well-documented oce-

anic anoxic events. Perturbations in the carbon cycle

lasting ]10 myr typically are attributed to changes in

the biological processes that are responsible for export

production and/or the geological processes that are

responsible for sediment preservation (Miller and

Fairbanks, 1985; Scholle and Arthur, 1980; Vincent

and Berger, 1985), rapid (b100000 yr) exchanges

between carbon reservoirs (Dickens et al., 1995; Kurtz

et al., 2003), or accretion of extraterrestrial carbon

(Kent et al., 2003; Wilde and Quinby-Hunt, 1997).

Because these short-duration global d13C events are

recorded in our bulk sediment d13Ccarb record, we can

infer that the primary isotopic signal is preserved with

little to no diagenetic overprint.

Our composite bulk sediment d13Ccarb record

reveals a 190 myr long increase of ~1.1x from the

Jurassic through the mid-Miocene and a subsequent

~2.5x decrease (Fig. 1; see figure caption for details

of regression). We focus on these two trends in this

paper, rather than the well-documented, shorter d13C
events that punctuate these trends, and which have

been the topic of many previous publications (see

Methods). The ~1.1x increase in our composite bulk

sediment d13Ccarb record (Fig. 1) can be supported by

combining Figs. 2 and 3 from Hayes et al. (1999);

when spliced together, the resulting d13Ccarb record

shows a long-term increase of ~1x (~1.5x to

~2.5x) from 200 to 20 Ma that was not identified

by Hayes et al. (1999) and has not been reported

previously. The long-term trends in the bulk sediment

d13Ccarb record from sites with different burial depth
histories also argue against diagenetic overprint

because diagenesis would not produce a systematic

differential offset through time.

3.2. Jurassic to mid-Miocene 1.1x d13Ccarb increase

Comparison of carbonate and organic carbon

isotope records provides the best means to monitor

changes in the geological carbon cycle (Kump and

Arthur, 1999) (Fig. 3). The d13Corg record shown here

was adapted from Hayes et al. (1999), who compiled

published and unpublished d13Corg data for marine

organic matter, modified the data based on several

criteria (see Hayes et al., 1999 for details of their data

manipulation), and plotted a smoothed curve (the

record shown here uses their data rather than their

smoothed curve). The simultaneous increases in

d13Ccarb (this study) and d13Corg (Hayes et al., 1999)

highlight a long-term increase in d13C of the mobile

carbon reservoir (Fig. 3; see figure caption for details

of statistics). Two processes could have driven this

long-term d13C increase: (1) an increase in the d13C of

input carbon (d13Cinput); and/or (2) an increase in the

fraction of organic carbon buried ( forg).

3.2.1. Model results

To investigate the two processes that could have

contributed to the long-term d13C increase (changes in

d13Cinput and forg; see previous section), we ran model

simulations based on a derivation of Eq. (1):

forg ¼ d13Cinput

� �
� fcarb4d

13Ccarb

� �� �
=d13Corg ð2Þ

Two model runs (Fig. 4) that use the d13Ccarb (this

study) and d13Corg (Hayes et al., 1999) datasets and

allow the model to calculate the burial fractions of

carbonate vs. organic carbon are shown. In the first

model run, d13Cinput was allowed to vary according to

GEOCARB III (Berner and Kothavala, 2001) param-

eters that are based on various feedbacks and

variables, such as the influence of land plants, erosion

rates, paleogeography, and global continental water

discharge (see Berner and Kothavala, 2001 for details

of the model). In the second simulation, d13Cinput was

held constant at �5x, based on the assumption that

carbonate and organic carbon weathering from con-

tinents averages out to the mantle carbon value over

long time periods (e.g., Kump and Arthur, 1999).
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curve through the data; see Section 3.2), and strontium isotopes (Howarth and McArthur, 1997). Phytoplankton species diversities are from published studies (calcareous nannofossils,

Bown et al., 2004; dinoflagellates, Stover et al., 1996; diatoms, Spencer-Cervato, 1999). Phytoplankton genus diversities were compiled for this study from publicly available

databases (Cenozoic calcareous nannofossils and diatoms, Spencer-Cervato, 1999; dinoflagellates, MacRae, unpublished data; Mesozoic diatoms, Harwood and Nikolaev, 1995). All

records are adjusted to a uniform time scale (Berggren et al., 1995; Gradstein et al., 1995). We use least squares regression (95% confidence interval) to determine the long-term trends

in d13Corg, where x=age and y=d13Corg: (1) Dd13Corg=4.4x for 0–31.1 Ma: y=(�0.14F0.036)x+(�21.89F0.66), R=0.96; (2) Dd13Corg=1.7x for 31.1–190 Ma:

y=(�0.011F0.0088)x+(�25.88F0.99), R=0.5 (outlier at 177.98 Ma was omitted from analysis). See Fig. 1 for d13Ccarb regression. d13Cinput is predicted from 87Sr/86Sr based

on a simple two-source system that predicts the maximum increase in d13Cinput. The primary sources of strontium and carbon in the oceans are hydrothermal/volcanic

(87Sr/86Sr=0.7064; d13C=�5x) and continental erosion (high 87Sr/86Sr=0.711 and d13C=0x; we assume carbonate weathering to constrain the maximum possible increase in

d13Cinput, and note that erosion of continental shales yields lower d13Cinput) (Hodell et al., 1989; Kump and Arthur, 1999). To constrain the maximum end-member predicted d13Cinput

increase, we use the maximum rate of 87Sr/86Sr increase prior to the Cenozoic inflection point (158.5–38.5 Ma; 87Sr/86Sr=(�0.0000065F0.0000001)age+(0.70810F.000007),

R=0.90).
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Both of these modeling efforts show that the

increases in d13Ccarb and d13Corg require an forg in-

crease of ~0.05–0.1, regardless of whether d13Cinput

varied (Berner and Kothavala, 2001) or was constant

(Kump and Arthur, 1999) (Fig. 4). This requires greater

burial efficiency (i.e., long-term sequestration) of or-

ganic matter in marine and/or terrestrial environments.
3.2.2. Phytoplankton evolution, carbon burial, and

the Wilson cycle

The greater burial efficiency of marine organic

matter that is indicated by our model simulations

resulted from a combination of increases in export

production and organic carbon preservation on the

seafloor. In this section, we investigate changes in
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marine primary producers (phytoplankton). We use

taxonomic diversity as a proxy for phytoplankton

evolution, although a spectrum of floral changes could

also be used to address the adaptation of eucaryotic

phytoplankton to changes in ocean conditions (e.g.,

structural innovations in phytoplankton or size trends

through time).

The long-term increases in d13Ccarb and d13Corg

that began in the Mesozoic were accompanied by

major evolutionary changes among the primary

producers in the marine biosphere (Fig. 3). Three

groups of eucaryotic marine phytoplankton (calcare-

ous nannoplankton, dinoflagellates, and diatoms)

began their evolutionary trajectories to ecological

prominence as the supercontinent Pangea began to

break apart in the Late Triassic–Early Jurassic (~200

myr ago), marking the opening phase of the current

Wilson cycle (Wilson, 1966; Worsley et al., 1986) of

continental break-up, dispersal, and reassembly. As

Pangea fragmented and the Atlantic Ocean basin

widened, the total length of coastline increased and

sea level rose, flooding continental shelves and low-

lying continental interiors. Nutrients that were pre-

viously locked up in the large continental interior of

Pangea were transported to newly formed shallow

seas and distributed over wider shelf areas and longer

continental margins.

The diversity increases in the three groups of

eucaryotic phytoplankton parallel the long-term sea-

level increase that began in the Early Jurassic (Haq et

al., 1987) (Fig. 3). Greater nutrient availability,

coupled with expanded ecological niches and

increased ecospace, appears to have selected for

phytoplankton that lived along continental margins

and contributed to their rapid radiation and evolution,

a trend that prevailed as sea level continued to rise

through the Mesozoic. The Cretaceous/Tertiary boun-

dary bolide impact caused mass extinctions (Alvarez

et al., 1980) that are recorded in the fossil records of

the coccolithophores and, to a lesser extent, the

diatoms and dinoflagellates (Fig. 3). The ensuing

collapse of organic matter export and burial is

recorded as a rapid decrease in d13Ccarb (Fig. 1)

(D’Hondt et al., 1998). Dinoflagellates and calcareous

nannoplankton recovered to pre-extinction diversity

levels by the earliest Eocene (~55 Ma), only to decline

through the rest of the Cenozoic as long-term sea level

began to fall in the mid-Paleogene. In contrast, diatom
diversity increased as diversities in the other two

groups decreased.

The radiation of large eucaryotic marine phyto-

plankton in the Mesozoic (Grantham and Wakefield,

1988; Moldowan and Jacobson, 2000) that efficiently

exported organic matter contributed to an overall

increase in export production through time (Bambach,

1993; Falkowski et al., 2003). Much of the export

production is concentrated along continental margins

today (Laws et al., 2000; Walsh, 1988), where up to

90% of organic carbon burial occurs (Hedges and

Keil, 1995). In the same manner, substantial amounts

of organic carbon were sequestered on the newly

formed passive continental margins of the Atlantic

and on flooded continental interiors (Arthur et al.,

1984; Bralower, 1999; Claypool et al., 1977; Jenkyns

and Clayton, 1997) as Pangea broke apart. Global

sediment budgets indicate that an order of magnitude

more sediment is deposited in ocean basins than is

subducted (Rea and Ruff, 1996), and that the long-

term marine sedimentary system can be at steady state

only over a complete Wilson cycle (Mackenzie and

Pigott, 1981; Rea and Ruff, 1996; Worsley et al.,

1986); we note that sedimentary accretion on cratons

has the potential to keep the system out of balance

even over several Wilson cycles. The circum-Atlantic

sediments have not yet been recycled through

subduction or uplift and erosion, and effectively have

become geological stores of organic matter. The net

effect of the long-term storage of large amounts of

isotopically light organic carbon has been to increase

the d13C of the remaining inorganic carbon reservoir

(Fig. 1).

3.2.3. Changes in forg vs. d13Cinput

A series of simple sensitivity tests based on Eq. (1)

helps to constrain the likelihood that changes in forg
and/or d13Cinput contributed to the 1.1x increase in

d13Ccarb. A ~20% increase in forg from 205 Ma to ~30

Ma is required to account for the measured changes in

d13Ccarb and d13Corg. Integrated over time (assuming a

linear increase in forg, constant carbon reservoir size,

and 300000 Gt/myr carbon burial flux; Berner and

Kothavala, 2001), this increase requires that an

additional ~1.1 million Gt (=91�1018 mol) of organic

carbon was buried at the expense of inorganic carbon

beyond the initial burial conditions at the beginning of

the current Wilson cycle.
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This organic matter could have been buried in

marine and/or terrestrial environments. However, the

partitioning of organic burial between the marine and

terrestrial realms cannot be quantified. We estimate

the order of magnitude for reasonable terrestrial

organic carbon burial based on models of the

Paleocene d13Ccarb perturbation—an event proposed

to be the result of excessive terrestrial organic carbon

burial (Kurtz et al., 2003), 1.25�1018 mol of

terrestrial organic carbon buried over 10 myr. If

similar elevated rates were sustained from 205 Ma to

~30 Ma, it would result in the burial of 21.9�1018

mol of total terrestrial organic carbon. Although this is

simply an upper limit estimate to provide an idea of

the order of magnitude of potential terrestrial organic

carbon burial, we note that it is at most only ~25–30%

of the predicted excess carbon burial. Therefore, we

conclude that marine carbon burial must have

constituted most of the forg increase.

Geologic evidence for high organic carbon burial

in the circum-Atlantic region as Pangea broke apart in

the Jurassic–Cretaceous (Arthur et al., 1984; Bra-

lower, 1999; Claypool et al., 1977; Jenkyns and

Clayton, 1997) supports the hypothesis that an

increase in marine organic carbon burial contributed

to the measured changes in d13Ccarb. Strong evidence

for the associated drawdown of atmospheric CO2 is

provided by proxy records that show a long-term

decline in atmospheric CO2 levels over the same time

period (see Royer et al., 2004 for review; proxy

records include d13C data from paleosols and phyto-

plankton, stomatal distribution in leaves, d11B from

planktonic foraminifera, and geochemical models). In

addition, an integrated carbon–calcium–strontium

model predicts that enhanced precipitation and ero-

sion following the break-up of Pangea contributed to

greater nutrient availability in the oceans, driving a

productivity increase that resulted in greater marine

organic carbon burial over the past 150 myr (Wall-

mann, 2001). Additional modeling predicts that

elevated export production and organic carbon burial

rates should enhance reducing conditions at the

seafloor and facilitate release of phosphate from

sediments; the resulting positive feedback generated

by this nutrient recycling can further enhance export

production (Wallmann, 2003). In this manner, expan-

sion of the large-cell eucaryotes in the Mesozoic and

organic carbon storage along the circum-Atlantic
passive margins may have favored phosphorous

availability and high rates of export production,

facilitating the forg increase predicted by our d13C

records and model simulations. This scenario is

supported by increasing values in marine sulfate

d34S (Fig. 4) that indicate increases in pyrite burial,

which is dependent on high levels of sedimentary

organic matter.

Assuming that oxygenic photosynthesis was the

ultimate source of this buried organic matter

(whether of terrestrial or marine origin), mass

balance requires that 3.0 million Gt of oxygen was

produced over the 205 myr interval. In the absence

of substantial negative feedbacks, the atmospheric

inventory of O2 would have at least tripled as a

result. Greater O2 production via organic carbon

burial should drive greater O2 production through

pyrite burial (Berner et al., 2003). This is supported

by the coeval increase in d34S (Fig. 4), which

indicates that the sedimentary reservoir of reduced

sulfur (=pyrite) increased, requiring a corresponding

increase in oxidized species. Therefore, the coeval

increases in forg and d34S (Fig. 4) indicate that the

oxidation state of Earth’s surface reservoirs

increased. Several modeling and sulfur isotope

studies conclude that it is unlikely that atmospheric

O2 levels increased by as much as threefold (Berner

et al., 2003; Hansen and Wallmann, 2003; Paytan et

al., 1998; Strauss, 1999); if this is correct, then either

some of the excess oxygen was consumed through

oxidation of surface carbon and sulfur reservoirs

(Hansen and Wallmann, 2003), or the d13C of the

mobile carbon reservoir was controlled not only by

excess burial of organic carbon, but also by an

increase in d13Cinput.

A simple sensitivity test using Eq. (1) shows that

to produce the measured d13Ccarb and d13Corg trends

without changing forg requires that d13Cinput increased

by 1.76x. To predict whether d13Cinput could have

increased as much as 1.76x, we use a sensitivity

test based on the 87Sr/86Sr record, given that both

carbon and strontium are supplied to the oceans from

the same sources (hydrothermal activity and con-

tinental weathering) (Fig. 3; see caption for details).

We assume that riverine delivery of carbon to the

oceans was dominated by carbonate erosion in order

to constrain the maximum potential increase in

d13Cinput due to changes in continental weathering,



M.E. Katz et al. / Marine Geology 217 (2005) 323–338 333
and note that erosion of continental shales would act

to decrease the maximum predicted d13Cinput. Sim-

ilarly, we use the maximum rate of 87Sr/86Sr increase

(prior to the Himalayan/Tibetan uplift) to constrain the

maximum end-member predicted d13Cinput increase

(Fig. 3; see figure caption for details). Results of this

sensitivity analysis show that d13Cinput could have

increased by no more than 0.87x; in reality, the

increase was most likely less, based on the assump-

tions listed above. The maximum predicted increase is

approximately half of the increase in d13Cinput

required to account for the measured d13Ccarb and

d13Corg changes if forg were held constant. Therefore,

it is likely that both forg and d13Cinput increased, in

effect both supplying more 13C to and extracting more
12C from the mobile carbon reservoir to drive the

observed 1.1x increase in d13Ccarb during the open-

ing phase of the current Wilson cycle.

Our results support the hypothesis that the

Phanerozoic Wilson cycles drove the greenhouse–

icehouse cycles. In this scenario, Fischer (1984)

proposed that volcanic CO2 outgassing during con-

tinental fragmentation created greenhouse climates,

and that atmospheric CO2 drawdown due to weath-

ering processes eventually switched the planet to an

icehouse mode. Our results indicate that there is a

significant biological component that contributes to

the climate switch. In this important additional

biological loop, changes in phytoplankton community

structure contributed to greater efficiency of organic

carbon burial beginning in the Early Jurassic. The

excess carbon burial that drove the net oxidation of

Earth’s surface reservoirs and atmospheric CO2

drawdown during the opening phase of the current

Wilson cycle ultimately contributed to the climate

change from the greenhouse conditions of the

Mesozoic to the icehouse conditions that characterize

the latter half of the Cenozoic.

3.3. A 2.5x d13Ccarb decrease since the mid-Miocene

d13Corg began to increase more rapidly at ~30 Ma,

while the rate of increase in d13Ccarb remained

relatively constant until ~15 Ma (Fig. 3). These

results indicate that forg increased during this interval

to the highest level of the past 205 Ma (Fig. 4),

culminating in the bMonterey Carbon ExcursionQ in
which large amounts of organic-rich, diatomaceous
sediments were deposited in marginal basins (Vincent

and Berger, 1985).

The d13Ccarb trend reversed in the Neogene, with

values that have decreased by ~2.5x since ~15 Ma

(Fig. 1) (Shackleton and Hall, 1984), while d13Corg

values continued to increase (Hayes et al., 1999)

(Figs. 1 and 3). This requires a 12C increase in the

mobile carbon reservoir through more 12C supply and/

or less 12C burial. 87Sr/86Sr and 187Os/186Os records

indicate a shift in the Neogene to continental source

rocks rich in organic carbon, which may have

increased the supply of 12C to the oceans even though

continental weathering rates may have decreased

(Derry and France-Lanord, 1996; Ravizza, 1993;

Turekian and Pegram, 1997). If the total carbon flux

(Berner, 1991) were constant, then an additional

~194000 Gt of carbon from organic carbon weath-

ering (at the expense of carbonate weathering) can

account for the entire 2.5x d13Ccarb decrease.

Although erosion of organic-rich black shales may

account for part of the 2.5x d13Ccarb decrease, we

present an alternative hypothesis based on a secular

increase in d13Corg (Fig. 3).

Large phytoplankton cells tend to produce high

d13Corg because they tend to have low growth rates and

low rates of diffusive flux (Laws et al., 1997; Popp et

al., 1998; Rau et al., 1997). Based on this concept,

Hayes et al. (1999) proposed that a trend towards low

CO2 levels (Freeman and Hayes, 1992), rapid cell

growth rates, and large cell volume relative to surface

area began in the early Oligocene, and that these

changes resulted in lower photosynthetic fractionation

factors that contributed to the d13Corg increase. How-

ever, the median diatom cell size appears to have

decreased through the Cenozoic (Finkel et al., in press),

contradicting the hypothesis of Hayes et al. (1999) that

a trend towards larger diatoms alone drove the d13Corg

increase. Here, we propose an alternative hypothesis in

which the higher d13Corg values result from the

increasing importance of h-carboxylation photosyn-

thetic pathways in marine phytoplankton and C4

pathways in terrestrial plants in the latter part of the

Cenozoic; these pathways produce organic matter with

higher d13C values than organic matter produced

through the C3 photosynthetic pathway.

For most of the Phanerozoic, marine and terrestrial

photosynthetic organisms fixed carbon through a C3

photosynthetic pathway (Falkowski and Raven,
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1997). The long-term depletion of CO2 associated

with greater organic carbon burial since the break-up

of Pangea was a key factor that ultimately selected for

new photosynthetic pathways in marine and terrestrial

ecosystems. Diatoms have h-carboxylation pathways

(Morris, 1987; Reinfelder et al., 2000) and are

responsible for a disproportionate fraction of carbon

export in the modern ocean (Dugdale et al., 1998;

Smetacek, 1999). Hence, the rapid radiation of

diatoms in the mid-Cenozoic (Fig. 3) must have

enriched the 13C composition of marine organic

matter. In the late Miocene (6–8 Ma), a major

expansion of grasslands throughout most of the world

was coupled with a shift in dominance from C3 to C4

grasses, producing 13C-enriched terrestrial biomass

(Cerling et al., 1997; Still et al., 2003). Consequently,
13C-enriched terrestrial organic matter was ultimately

transferred to and sequestered in the oceans (France-

Lanord and Derry, 1994; Hodell, 1994) at the same

time that 13C-enriched diatoms continued to expand

(Fig. 3). The rise of h-carboxylation and C4 photo-

synthetic pathways can account for a 1.1x decrease

in d13Ccarb (based on a 4.4x increase in d13Corg

(Hayes et al., 1999) and assuming constant d13Cinput,

fcarb, and forg). Attributing the remaining ~1.4x
d13Ccarb decrease to weathering of organic-rich shales

(as outlined above) requires that an additional

~110000 Gt of organic carbon was transferred from

the continents to the oceans over 15 myr.
4. Summary and conclusions

Our results show that biological and tectonic

processes acted in concert to increase the efficiency

of organic carbon burial, driving the 190-myr-long

depletion of 12C from the ocean–atmosphere system

that began in the Jurassic. The resulting long-term

increase in d13C of the mobile carbon reservoir is

apparent in simultaneous increases in d13Ccarb (this

study) and d13Corg (Hayes et al., 1999). This was most

likely the result of increases in both forg and d13Cinput,

which supplied more 13C to and extracted more 12C

from the mobile carbon reservoir during the opening

phase of the current Wilson cycle.

As Pangea rifted, the enlarging ecospace along

newly formed continental margins promoted the

diversification and radiation of large-celled eucaryotic
phytoplankton. More efficient export production and

long-term storage of organic matter along passive

continental margins resulted in an forg increase, with

corresponding net oxygen production and atmospheric

CO2 drawdown. At the same time that carbon was

buried in the circum-Atlantic region, sedimentary

carbonwas recycled through subduction, delamination,

and decarbonation or transfer to orogenic metasedi-

ments as the Tethys and Pacific Ocean basins shrank

(Selverstone and Gutzler, 1993).

This process demonstrates that continental frag-

mentation facilitates organic carbon burial, oxidation

of Earth’s surface reservoirs, and drawdown of

atmospheric CO2, eventually contributing to the

switch from the greenhouse climate of the Mesozoic

to the icehouse climate of the late Cenozoic. These

processes should reverse in the second half of the

Wilson cycle as continents reassemble and organic-

rich sediments are recycled along the Atlantic margins

as the basin closes. This analysis suggests that the

geological carbon cycle is strongly influenced by

biological processes that control the redox state of the

planet and that steady state cannot be approached until

a full Wilson cycle is completed.

The long-term depletion of CO2 associated with

greater organic carbon burial was a key factor that

selected h-carboxylation and C4 photosynthetic path-

ways in marine and terrestrial ecosystems. These new

pathways are responsible for the d13Corg increase in

the latter half of the Cenozoic, and contributed to the

d13Ccarb decrease that began in the mid-Miocene. The

abrupt increase in d13Corg occurred without a large

change in either the atmospheric oxidation state or an

injection of 12C from mantle outgassing, and appears

to be a unique event in Earth’s history. These records

show that biological processes play a more significant

role in modifying the long-term geological carbon

budget than in general has been acknowledged, and

have contributed to a global carbon cycle output and

planetary redox state that have been out of balance

since the Early Jurassic.
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