

Residence time of stars of different mass on the main sequence. Numbers next to spheres indicate the mass relative to the mass of the Sun (= 1). Surface temperatures of the various stellar objects are indicated (after Huang, 1970).

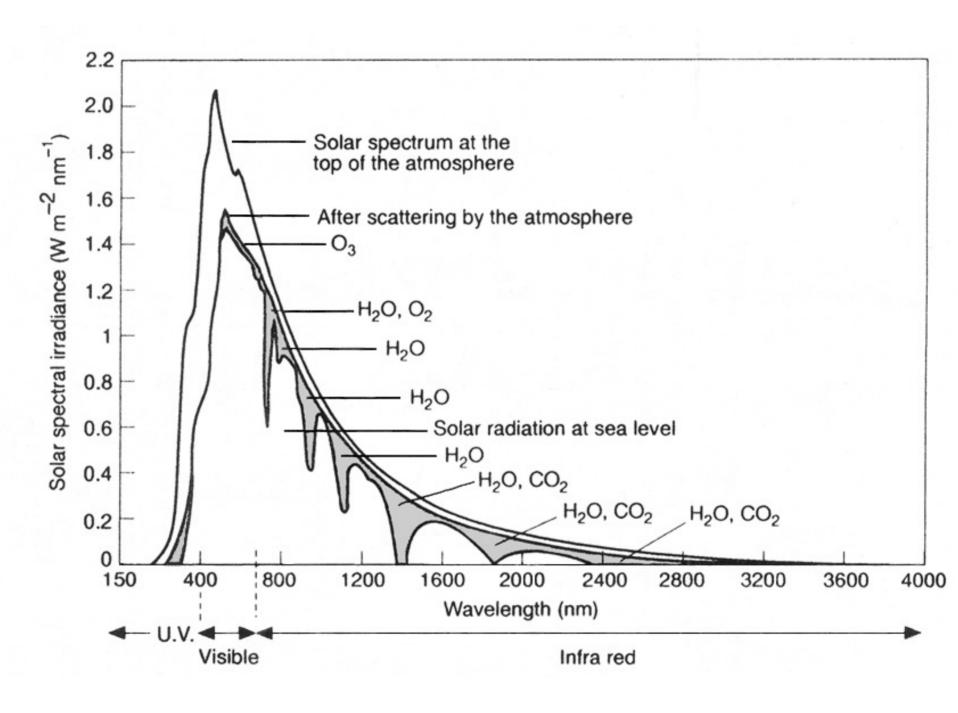


Table 8.7 Summary of data on the probable chemical composition of the atmosphere during stages 1, 2 and 3*

Stage 1 (early Earth)	Stage 2 $(\sim 2 \times 10^9 \text{ years ago})$	Stage 3 (Today)		
Major compon	ents (p>10 ⁻² atm)			
CO ₂ (10 bar) N ₂ (1 bar)	N_2	N ₂		
CH₄ CO		02		
Minor compor	ents (10 ⁻² 10 ⁻	⁶ atm)		
H ₂ (?)	O ₂ (?)	Argon		
H ₂ O H ₂ S	H ₂ O CO ₂	H ₂ O CO ₂ (10 ⁻³ bar)		
NH ₃	Argon	002 (10 841)		
Argon	(CO?)			
Trace compon	ents ($p < 10^{-6}$ atm)			
He	Ne	Ne		
Ne	He	He		
	CH ₄	CH₄		
	NH ₃ (?)	CO		
O ₂ (10 ⁻¹³ bar)	SO ₂ H ₂ S (?)	NO		

^{*} We are able to give a good account of stage 3 (Section 8.6.1) and a good estimate of stage 1, but the evolutionary period, stage 2, is hard to describe with any accuracy.

Table 8.8 The characteristics of the early ocean and of today

Proto-ocean (?)

pH=2.0 (initial); T=80°C
CO₂ and SO₂ not very soluble
HCl gives the acidity
Initially weak content of cations, but
increasing to Ca²⁺, 115 mM; Mg²⁺,
95 mM; Na⁺, 120 mM; K⁺, 60 mM
Redox potential around -0.5 to 0.0
volts

Early ocean

pH=8.0; T=55°C HCO $_3^-$ (CO $_2$) high; SO $_4^{2-}$ low; H $_2$ S high Ca $^{2+} \ge 10$ mM Fe $^{2+}$, 1 mM; Zn $^{2+} \le 10^{-10}$ M Redox potential > 0.0 rising to < 0.4 volts

Late ocean (today)

pH=8.0; T=25°C HCO₃⁻ (CO₂) high, and SO₄²⁻ (not H₂S) present Average concentrations of cations are Ca²⁺, 10 mM; Mg²⁺, 105 mM; Na⁺, 470 mM; K⁺, 10 mM Redox potential up to 0.80 volts at surface (O₂) Fe³⁺, 10⁻¹⁷M; Cu²⁺, etc., see Fig. 8.15

Table 8.9 Some trace elements in the early sea*

Elements present

Fe²⁺, Mn²⁺, (Mo⁶⁺), V⁴⁺, (Ni²⁺), W⁶⁺, (Co²⁺), Se as
$$H_2$$
Se

Elements largely absent

* The assumption is that the pH \geqslant 5 and the amount of H₂S kept the sea as a reducing medium (see Fig. 8.11). The concentration of Mo⁶⁺ may have been lower than that of W⁶⁺ as Mo is precipitated as MoS₂ at low pH

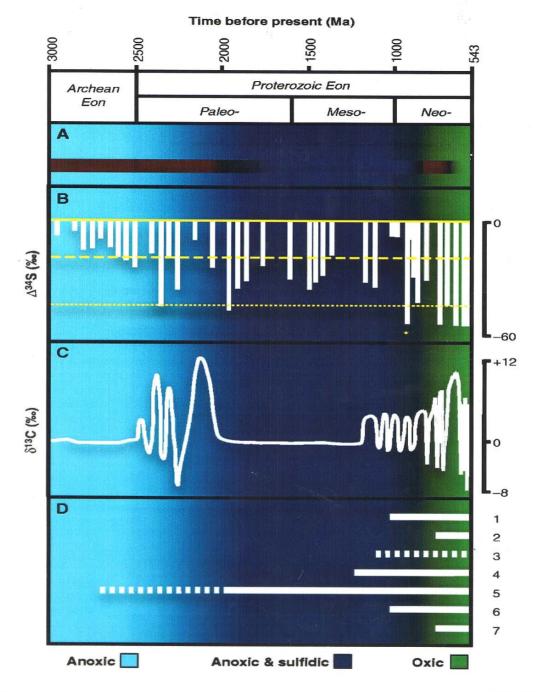


Table 1.1 Major Chemical Constituents of the Earth's Crust, Sediments, Ocean Water, and Atmosphere


Element	Crystal ionic charge and radius ^a		Continental crust		Oceanic crust		Average sediments		o Ocean water		Atmosphere	
		r(Å)	(wt % ^b)	(vol %)	(wt % ^b)	(vol %)	(wt %')	(vol %)	(wt %a)	(vol %)	(wt %)	(mol % or vol % ^a)
0	-2	1.32	46.40	93.04	43.80	92.57	47.61	91.32	86.0	99.0 as H ₂ O	23.15	20.95 (O ₂)
Si	+4	0.42	28.15	1.04	24.00	0.93	24.40	0.86		3		
Al	+3	0.51	8.23	0.56	8.76	0.63	6.03	0.40				
Fe	$\begin{cases} +3 \\ +2 \end{cases}$	{ 0.64 0.74	5.63	0.46	8.56	0.74	3.79	0.30		9		*
Ca	+2	0.99	4.15	1.40	6.72	2.39	7.86	2.54	0.04	0.025		
Na	+1	0.97	2.36	1.31	1.94	1.13	1.36	0.72	1.08	0.11	*	
Mg	+2	0.66	2.33	0.38	4.5	0.78	2.44	0.39	0.13	0.04		
K	+1	1.33	2.09	1.75	0.83	0.73	2.00	1.61	0.04	0.062		
Ti Mn	+4	0.68	0.54 0.095	0.05	0.90 0.15	0.09						2
H			0.14		0.2				10.7	(see O)		
P	+5	0.35	0.105		0.14		0.16	0.003		20		
S	+6	0.30	0.026		0.025		0.62	0.007	0.09	0.0002		
C	+4	0.16					2.91d	0.013	0.28	0.002	0.046	0.03 (CO ₂)
Cl	-1	1.81					0.83	1.85	1.94	0.833	troubs about	manager and the second
N											75.53	78.09 (N ₂)
Ar											1.28	0.93 (Ar)

^aWeast (1974).

^bTaylor (1964).

^cFrom Garrels et al. (1975, p. 61). ^dInorganic C, 2.4; organic, 0.5.

THE WILSON "CYCLE"

http://geollab.jmu.edu/Fichter/Wilson/wilsoncircl.html