
Polynucleotide structure. In DNA and RNA, the phosphodiester bridges link the 3'-hydroxyl of one nucleotide to the 5'-hydroxyl of the next.

What are we made of?

The "Big Six" elements

H, C, N, O, P, S

What are the forms of these elements in "organic" matter?

What makes a compound "organic"?

Are all organic molecules formed from biological processes?

What are early sources of organic matter on Earth?

What is "life"?

When did life begin?

CH ₂ OH	СНО	СНО
C=O 	HCOH 	CH_2
HCOH	HCOH	HCOH
HCOH	HCOH	HCOH
CH ₂ OH	CH ₂ OH	CH ₂ OH
D-ribulose	D-ribose	2deoxy-D-ribose

The S C sugars

Constituent	Concentration in seawater* (mg/kg)	Chlorinity ratio*	Concentration in river water* (mg/kg)	Mean residence time (10 ⁶ yr) 75			
Sodium	10,760	0.5561	5.15				
Magnesium	1,294	0.0668	3.35	14			
Calcium	412	0.0213	13.4	1.1			
Potassium	399	0.0206	1.3	11			
Strontium	7.9	0.00041	0.03	12			
Chloride	19,350	1.0000	5.75	120			
Sulfate	2,712	0.1400	8.25	12			
Bicarbonate	145	0.0075	52	0.10			
Bromide	67	0.0035	.02	100			
Boron	4.6	0.00024	0.01	10.0			
Fluoride	1.3	0.000067	0.10	0.5			
Water				0.034			

Table 9.1 Major Ion Composition of Seawater, Showing Relationships to Total Salinity and Mean Residence Times for the Elements with Respect to River Water Inputs

* Holland (1978).

^{*}Meybeck (1979) and Holland (1978).

Table 2.1 Composition of Volcanic Gases Released from the Kudryavy and Other Volcanoes

Volcano	H_2O	H_2	CO_2	SO_2	H_2S	HCl	HF	N_2	NH ₃	O_2	Ar	CH_4	Reference
Kudryavy, Russia Nevado del Ruiz, Columbia	95.00 94.90	0.56	2.00 2.91	1.32	0.41 0.80	0.3700 0.0052	0.030	0.21	_	0.03	0.002	0.002	Taran et al. (199
Kamchatka, Russia	94.90 78.60	3.01	4.87	0.03	0.80	0.0052	0.056	11.87	0.11	0.01	0.060	0.440	Williams et al. (1 Dobrovolsky (19)

The Initial Condition Problem

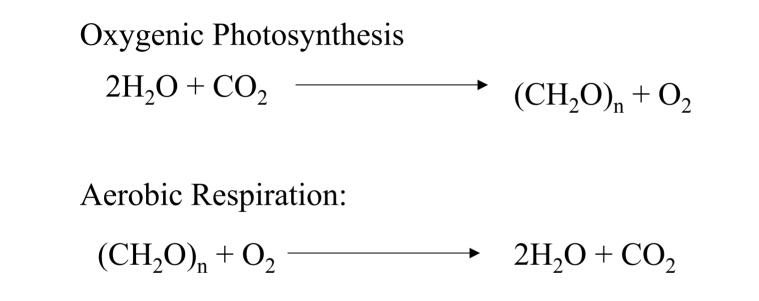
- Was the early Earth hot or cold?
- Was there NH₃ in Earth's atmosphere?
- •What was the redox potential of the ocean?

The Amino Acid World

- Amino acids are stable for long periods even at relatively high temperatures. However, the abiodic formation of amino acids requires NH_3
- NH₃ was not stable in the Archean atmosphere

The RNA World

• Given a supply of ribose (a major caveat), RNA can self replicate. However, RNA stability is very much reduced at high temperature.

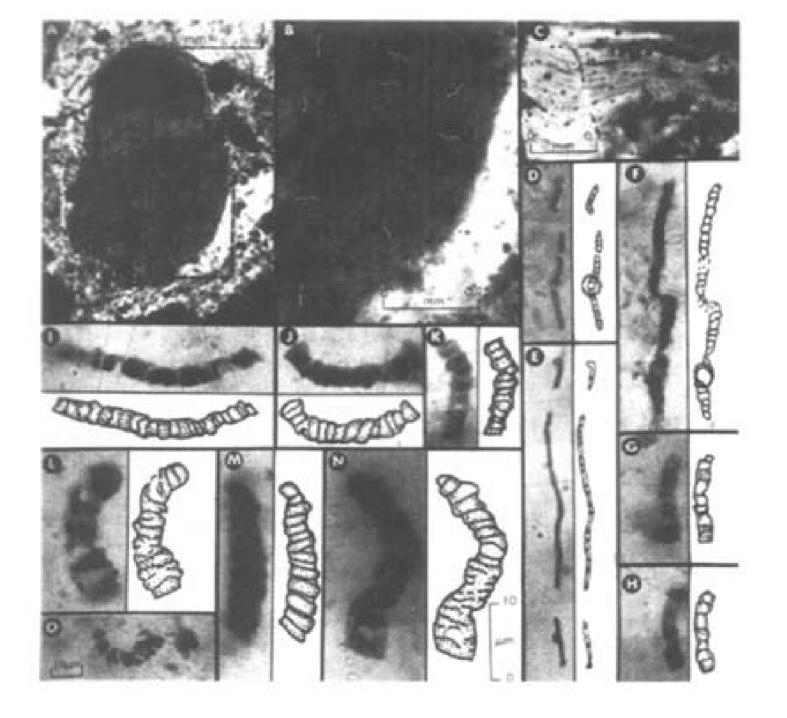

The Redox Reaction Hypothesis

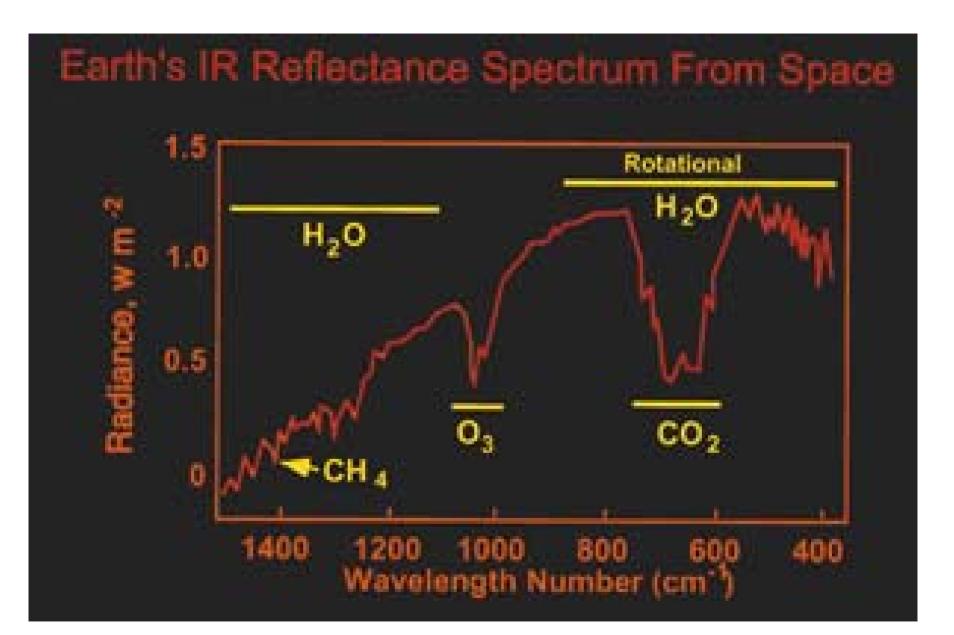
- Oxidation/reduction reactions are catalyzed by transition metals independent of proteins.
- In a "Primordial Soup" with organic molecules, redox reactions can mediate "metabolic pathways" without organisms

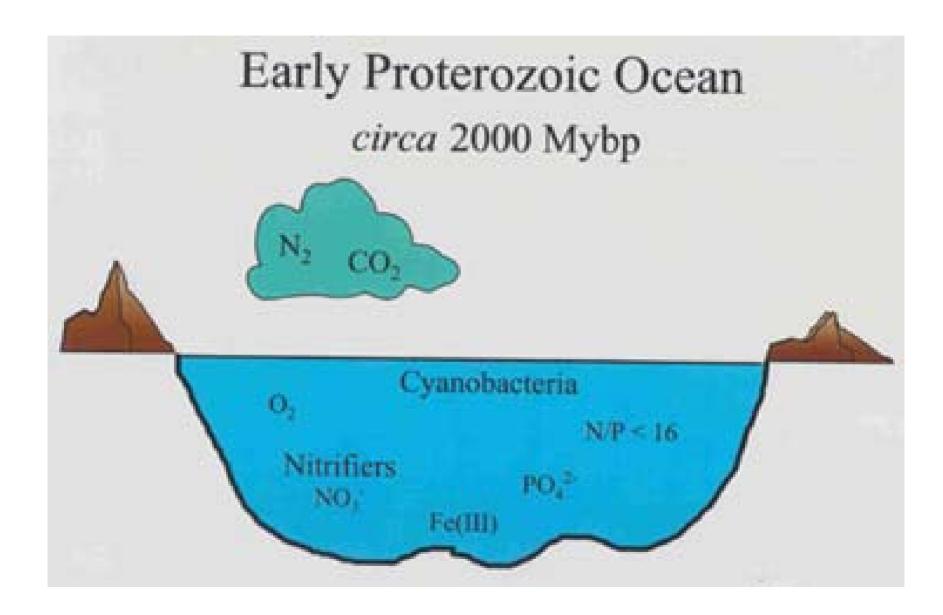
Life is Electric

- All organisms derive energy for growth and maintenance by moving electrons from a substrate to a product.
- All substrates and products must ultimately be cycled.
- Biological processes are paired (e.g., photosynthesis and respiration)

Redox Reactions are Couple on a GLOBAL SCALE

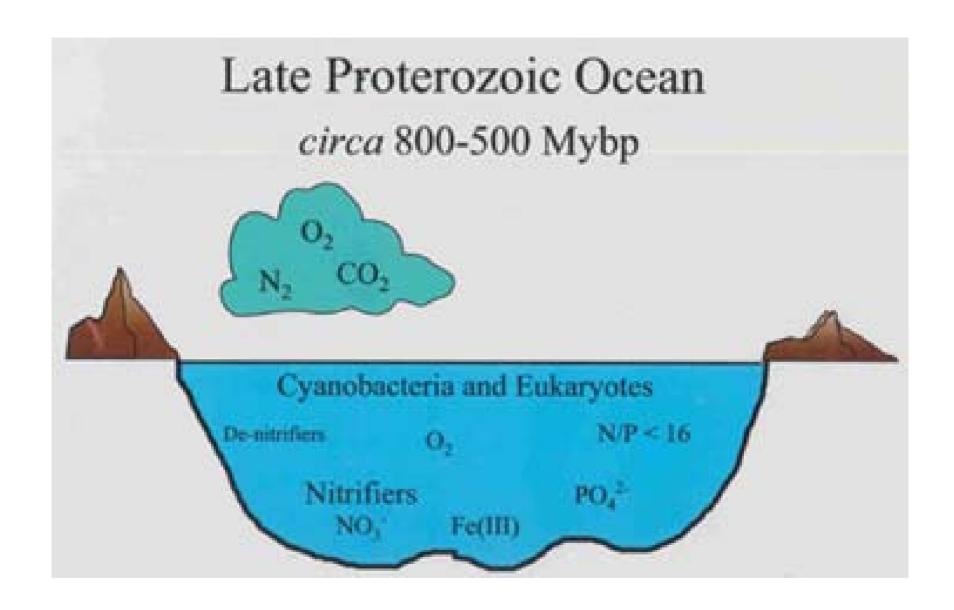

Q. Are photosynthesis and respiration balanced on a global scale?


Redox Reactions Are Coupled On


General Reaction

$$A(ox) + n (e^{-}) \longrightarrow A(red)$$
$$B(red) - n (e^{-}) \longrightarrow B(ox)$$

Photosynthesis $2H_2O + light \longrightarrow 4H^+ + 4e^- + O_2$ $CO_2 + 4H^+ + 4e^- \longrightarrow (CH_2O) + H_2O$



ntinent	HCO3	SO_4^{2-}	Cl^{-}	NO_3^-	Ca ²⁺	Mg^{2+}	Na ⁺	K*	Fe	SiO ₂	Sum
h America	68	20	8	1	21	5	9	1.4	0.16	9	142
America	31	4.8	4.9	0.7	7.2	1.5	4	2	1.4	11.9	69
pc	95	24	6.9	3.7	31.1	5.6	5.4	1.7	0.8	7.5	182
	79	8.4	8.7	0.7	18.4	5.6	9.3		0.01	11.7	142
	43	13.5	12.1	0.8	12.5	3.8	11		1.3	23.2	121
afia	31.6	2.6	10	0.05	3.9	2.7	2.9	1.4	0.3	3.9	59
8	58.4	11.2	7.8	1	15	4.1	6.3	2.3	0.67	13.1	120
is ⁴	0.958	0.233	0.220	0.017							1.428
as ⁴					0.750	0.342	0.274	0.059			1.425

Table 8.5 Mean Composition of Dissolved Ions in River Waters of the World*

ringstone (1963); concentrations in mg/liter.

Requivalents of strongly ionized components.

