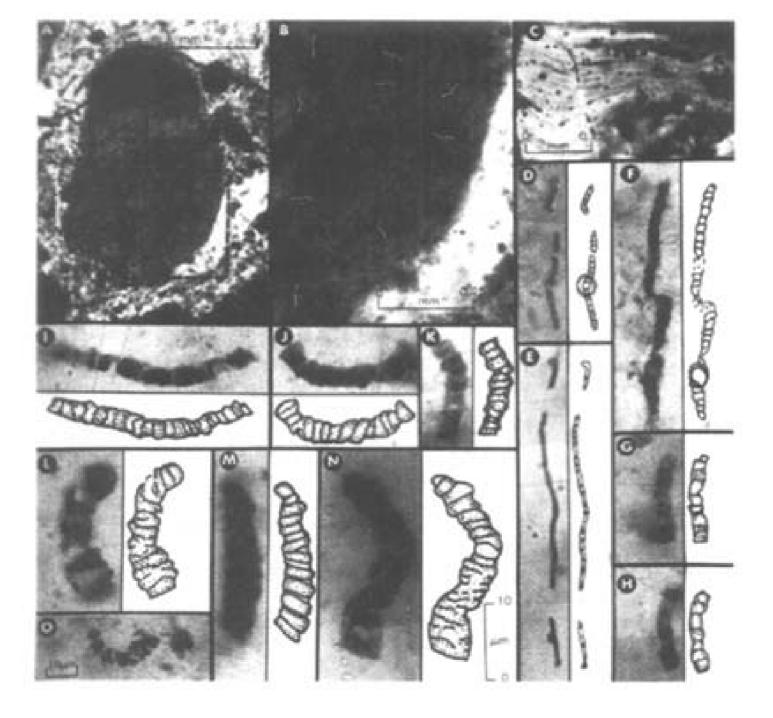
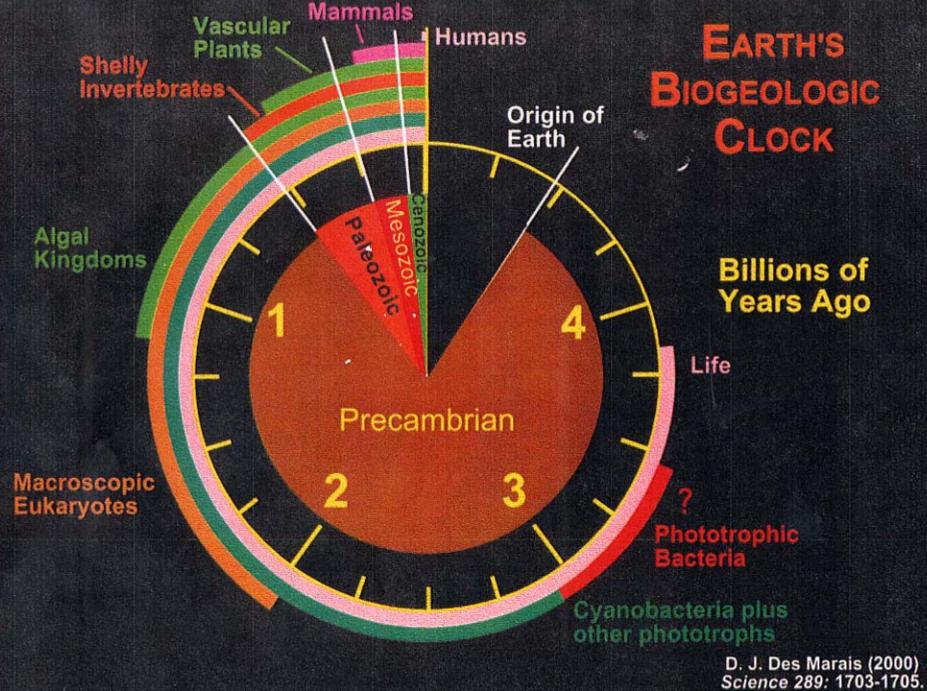
Table 17.2. Normal Oxidation-Reduction Potentials of Some Biologically Important Systems at pH 7.0

SYSTEM	E'_0	T in °C.	
Ketoglutarate	-0.68	-‡	
Ferredoxin	-0.432	—§	
Formate \rightleftharpoons CO ₂ + H ₂	-0.420	38	
$H_2 \rightleftharpoons 2H^+ + 2e$	-0.414	25	
$NADH + H^+ \rightleftharpoons NAD^+ + 2H^+ + 2e$	-0.317	30†	
$NADPH + H^+ \rightleftharpoons NADP^+ + 2H^+ + 2e$	-0.316	30†	
Horseradish oxidase	-0.27	—†	
$FADH_2 \rightleftharpoons FAD + 2H^+ + 2e$	-0.219	30†	
$FMNH_2 \rightleftharpoons FMM + 2H^+ + 2e$	-0.219	30†	
Lactate \rightleftharpoons pyruvate + 2H ⁺ + 2e	-0.180	35	
Malate \Rightarrow oxaloacetate + 2H ⁺ + 2e	-0.102	37	
Reduced flavin enzyme flavin enzyme + 2H ⁺ + 2e	-0.063	38	
Luciferin*	-0.050	5*	
Ferrocytochrome B ⇒ ferricytochrome B + e	-0.04	25	
Succinate	-0.015	30	
Decarboxylase	+0.19	- †	
Ferrocytochrome $C \rightleftharpoons ferricytochrome C + e$	+0.26	25	
Ferrocytochrome $A \rightleftharpoons ferricytochrome A + e$	+0.29	25	
Ferrocytochrome $A_3 \Longrightarrow$ ferricytochrome $A_3 + e$	5	-‡	
$H_2O \rightleftharpoons \frac{1}{2}O_2 + 2H^+ + 2e$	+0.815	25	


Data from Goddard, 1945. Potentials in all cases are at or near neutrality.


^{*} From McElroy and Strehler, 1954: Bact. Rev. 18.

[†] From Clark, 1960.

[‡] From Goddard and Bonner, 1960: In Plant Physiology, a Treatise. Steward, ed. Academic Press, New York. Goddard and Bonner give the NADPH/NADP⁺ system as −0.324, and NADH/NAD⁺ as −0.320.

[§] From Tagawa and Arnon, 1962: Nature 195:537-543. The value cited is for spinach ferredoxin.

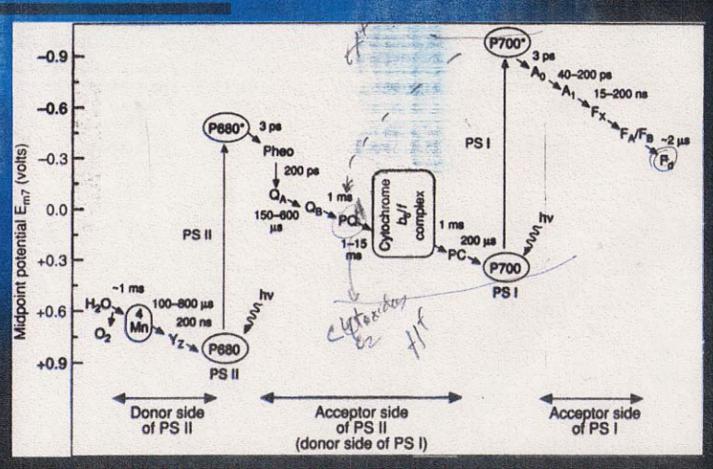
Carbon Pools in the Major Reservoirs on Earth

T 11 61	0 1				- T
Iable 5.1	Carbon	pools in	the ma	ajor reservoirs	on Earth

Pools	Quantity (×1013 g)
Atmosphere	720
Oceans	38,400
Total inorganic	37,400
Surface layer	670
Deep layer	36,730
Total organic	1,000
Lithosphere	
Sedimentary carbonates	>60,000,000
Kerogens	15,000,000
Terrestrial biosphere (total)	2,000
Living biomass	600-1,000
Dead biomass	1,200
Aquatic biosphere	1-2
Fossil fuels	4,130
Coal	3,510
Oil	230
Gas	140
Other (peat)	250

From: Falkowski & Raven. Aquatic Photosynthesis. p. 130 (1997)

REDOX REACTIONS ARE COUPLED ON


MICROSCOPIC SCALES

General Reaction
$$A(ox) + n (e^{-}) \qquad A(red)$$

$$B(red) - n(e^{-}) \longrightarrow B(ox)$$
Photosynthesis
$$2H_{2}O + light \longrightarrow 4H^{+} + 4e^{-} + O_{2}$$

$$CO_{2} + 4H^{+} + 4e^{-} \longrightarrow (CH_{2}O) + H_{2}O$$

Oxygenic Photosynthetic Electron Transport

From: Falkowski & Raven. Aquatic Photosynthesis. (1997)

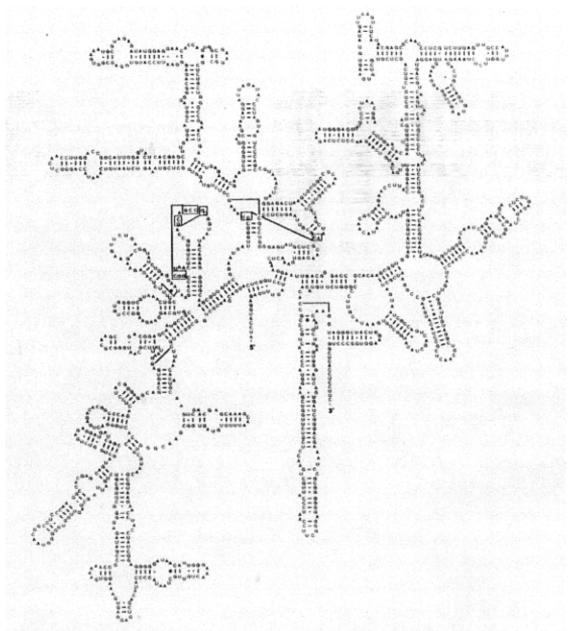
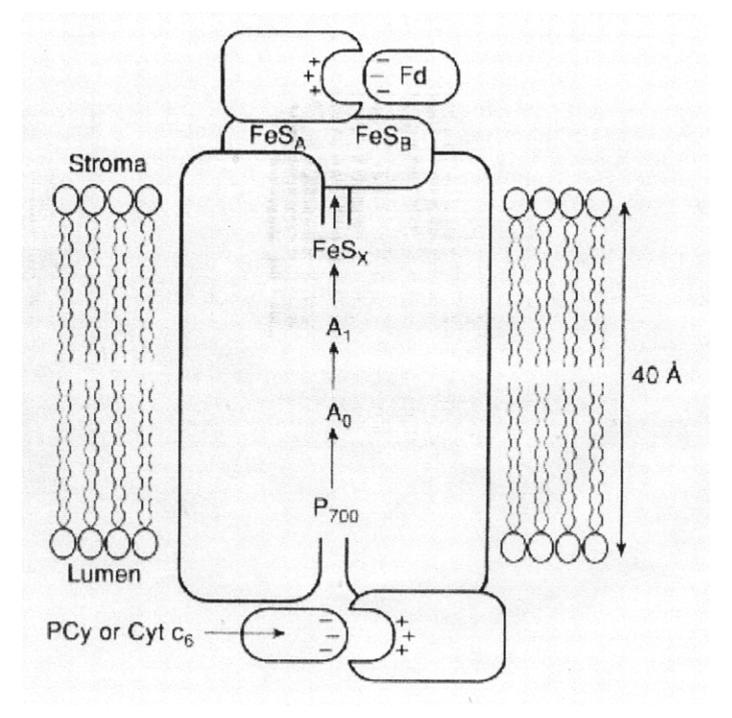



Figure 1.7 The secondary structure of the small subunit (16S) rRNA from *Chlamydomonas* reinhardtii. The structure is inferred from homology with known structures in yeast and prokaryotes. Hollow circles and unpaired regions represent areas of generally higher variability between organisms.

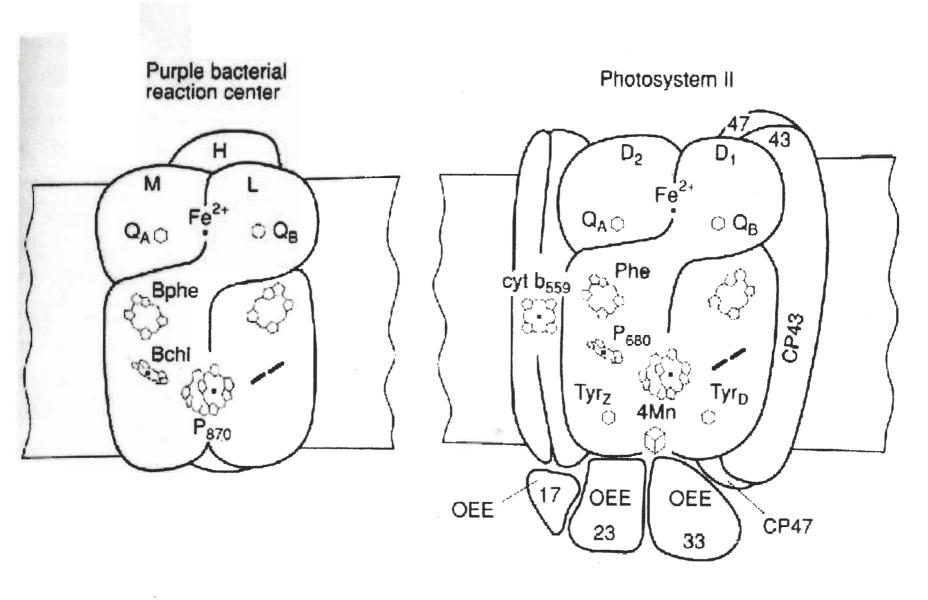
The Nernst Equation

$$[A_{ox}] + n [e^-] + m[H^+]_{\longrightarrow}[A_{red}]$$

where m is the number of protons involved in the reduction of A_{ox} .

The redox potential for this reaction can be calculated by:

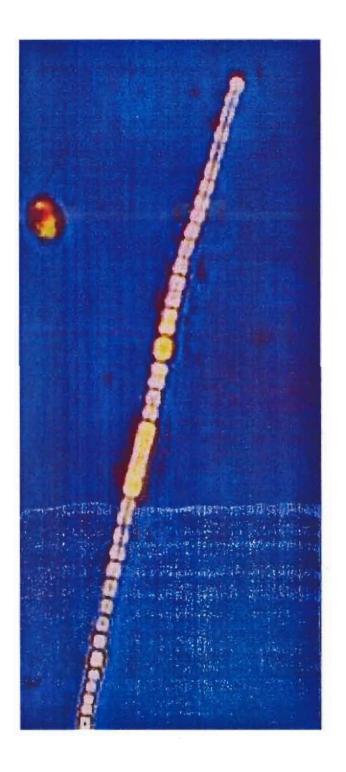
$$E = E_{m7} + 59/n \log [A_{red}]/[A_{ov}][H^+]^m$$


which can be rewritten as:

$$E = E_{m7} + 59/n \log ([A_{red}]/[A_{ox}]) + 59(m/n)pH$$

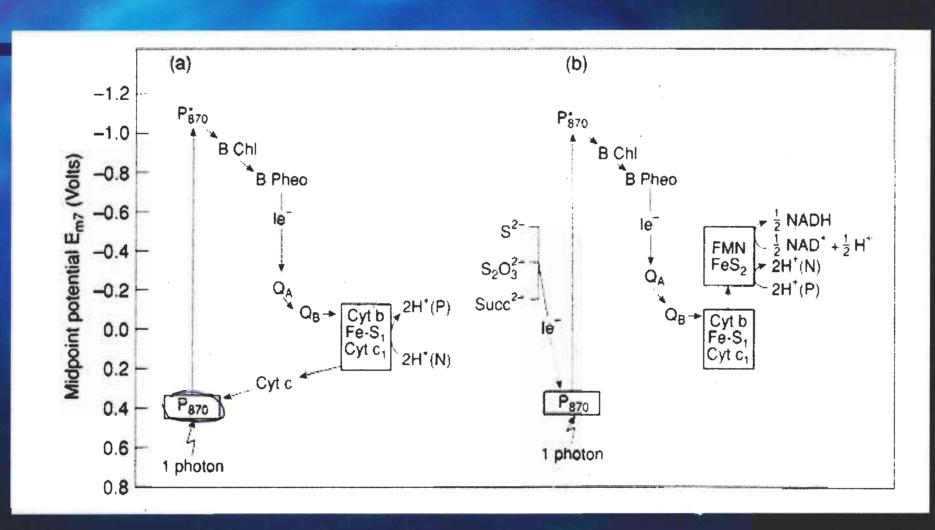
Table 4.1 Mid-point potentials for some common electron carriers in photosynthesis research

	$ox + n(e^-) + m(H^+)$ $\rightleftharpoons red$			Change in $E_m(mV)$ when	
	n m (mV)		E _m (mV)	pH increased by 1 unit	
Dithionite ox/red	1	0	-610	0	
Methyl viologen ox/red	1	0	-450	0	
CO ₂ /CH ₂ O	2	2	-43 0	-60	
Ferredoxin ox/red	1	0	-430	0	
$H^{+}/^{1}/_{2}H_{2}(H_{2} 1 atm)$	1	1	-420	-60	
NAD+/NADH	2	1	-320	-30	
NADP*/NADPH	2	1	-320	-30	
Menaquinone/menaquinol	2	2	-74	-60	
Plastoquinone/plastoquinol	2	2	-0	-60	
Fumarate/succinate	2	2	+30	-60	
Ubiquinone/ubiquinol	2	2	+40	-60	
Ascorbate ox/red	2	1	+60	-30	
PMS ox/red	2	1	+80	-30	
DCPIP/DCPIPH2	2	2	+220	-6 0	
TMPD ox/red	1	0	+260	0	
DAD/DADH ₂	2	2	+275	-60	
Cytochrome f (ox/red)	1	0	+350	0	
Cytochrome c ₅₅₃ (ox/red)	1	0	+370	0	
Plastocyanin (ox/red)	1	0	+380	0	
Ferricyanide ox/red	1	0	+420	0	
P ₂₀₀ /P ⁺ ₂₀₀	1	0	+480	0	
O ₂ (1 atm)/2H ₂ O(55 M)	4	4	+840	-60	
P ₅₈₀ /P ⁺ ₅₈₀	1	0	+1100	0	


DAD is 2,3,5,6-tetramethylphenylene diamine; PMS is phenazine methosulphate; TPMD is N,N,N',N'-tetramethyl-p-phenylene diamine; DCPIP is 2,6-dichlorophenolindophenol. (Adapted from Nicholls DG and Ferguson SJ, Bioenergetics. London: Academic Press, 1992)


Methanogenesis **Elemental Sulfur Reduction Anoxygenic Photosynthesis Sulfate Reduction** Methanotrophy Oxygenic Photosynthesis

Fig. 2. This figure depicts the lineages supporting key metabolisms of the sulfur cycle, as well as other important metabolisms with relevance for the cycling of sulfur. The Archaeal and Bacterial Domains are represented here, while the Domain Eucarya is not shown. See figure 1 as a reference for the lineages depicted.


Anabaena sp.

Phytoplankton Absorption

Electron Transport in Photosynthetic Bacteria

From: Falkowski & Raven. Aquatic Photosynthesis. (1997)