Table 17.2. Normal Oxidation-Reduction Potentials of Some Biologically Important Systems at pH 7.0

SYSTEM	E'_0	Т IN °С. —‡
Ketoglutarate	-0.68	
Ferredoxin	-0.432	_‡ _§
Formate \rightleftharpoons CO ₂ + H ₂	-0.420	38
$H_2 \rightleftharpoons 2H^+ + 2e$	-0.414	25
$NADH + H^+ \rightleftharpoons NAD^+ + 2H^+ + 2e$	-0.317	30†
$NADPH + H^+ \rightleftharpoons NADP^+ + 2H^+ + 2e$	-0.316	30†
Horseradish oxidase	-0.27	—†
$FADH_2 \rightleftharpoons FAD + 2H^+ + 2e$	-0.219	30†
$FMNH_2 \rightleftharpoons FMM + 2H^+ + 2e$	-0.219	30†
Lactate \rightleftharpoons pyruvate + 2H ⁺ + 2e	-0.180	35
Malate \rightleftharpoons oxaloacetate + 2H ⁺ + 2e	-0.102	37
Reduced flavin enzyme flavin enzyme + 2H ⁺ + 2e	-0.063	38
Luciferin*	-0.050	5*
Ferrocytochrome B ⇒ ferricytochrome B + e	-0.04	25
Succinate	-0.015	30
Decarboxylase	+0.19	-†
Ferrocytochrome $C \rightleftharpoons ferricytochrome C + e$	+0.26	25
Ferrocytochrome A ⇒ ferricytochrome A + e	+0.29	25
Ferrocytochrome $A_3 \Longrightarrow$ ferricytochrome $A_3 + e$	5	-‡
$H_2O \rightleftharpoons \frac{1}{2}O_2 + 2H^+ + 2e$	+0.815	25

Data from Goddard, 1945. Potentials in all cases are at or near neutrality.

^{*} From McElroy and Strehler, 1954: Bact. Rev. 18.

⁺ From Clark, 1960.

[‡] From Goddard and Bonner, 1960: In Plant Physiology, a Treatise. Steward, ed. Academic Press, New York. Goddard and Bonner give the NADPH/NADP⁺ system as −0.324, and NADH/NAD⁺ as −0.320.

[§] From Tagawa and Arnon, 1962: Nature 195:537-543. The value cited is for spinach ferredoxin.

Carbon Pools in the Major Reservoirs on Earth

Table 5.1	Carbon	pools in	the ma	or reservoirs	on Earth
A SHIRT WALL	THE CAN BE SHARE	POPULATE VAN	PRES WARRE	ON THOUSE LOSTER	WAY WALEST PAR

Pools	Quantity (×1013 g)
Atmosphere	720
Oceans	38,400
Total inorganic	37,400
Surface layer	670
Deep layer	36,730
Total organic	1,000
Lithosphere	
Sedimentary carbonates	>60,000,000
Kerogens	15,000,000
Terrestrial biosphere (total)	2,000
Living biomass	600-1,000
Dead biomass	1,200
Aquatic biosphere	1-2
Fossil fuels	4,130
Coal	3,510
Oil	230
Gas	140
Other (peat)	250

From: Falkowski & Raven. Aquatic Photosynthesis. p. 130 (1997)

REDOX REACTIONS ARE COUPLED ON

MICROSCOPIC SCALES

General Reaction
$$A(ox) + n (e^{-}) \qquad A(red)$$

$$B(red) - n(e^{-}) \longrightarrow B(ox)$$
Photosynthesis
$$2H_{2}O + light \longrightarrow 4H^{+} + 4e^{-} + O_{2}$$

$$CO_{2} + 4H^{+} + 4e^{-} \longrightarrow (CH_{2}O) + H_{2}O$$

Oxygenic Photosynthetic Electron Transport

From: Falkowski & Raven. Aquatic Photosynthesis. (1997)

Figure 1.7 The secondary structure of the small subunit (16S) rRNA from *Chlamydomonas* reinhardtii. The structure is inferred from homology with known structures in yeast and prokaryotes. Hollow circles and unpaired regions represent areas of generally higher variability between organisms.

The Nernst Equation

$$[A_{ox}] + n [e^-] + m[H^+]_{\longrightarrow}[A_{red}]$$

where m is the number of protons involved in the reduction of A_{ox} .

The redox potential for this reaction can be calculated by:

$$E = E_{m7} + 59/n \log [A_{red}]/[A_{ov}][H^+]^m$$

which can be rewritten as:

$$E = E_{m7} + 59/n \log ([A_{red}]/[A_{ox}]) + 59(m/n)pH$$