Table 17.2. Normal Oxidation-Reduction Potentials of Some Biologically Important Systems at pH 7.0

system	E_{0}^{\prime}	T in ${ }^{\circ} \mathrm{C}$.
Ketoglutarate \rightleftharpoons succinate $+\mathrm{CO}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}$	-0.68	$-\ddagger$
Ferredoxin	-0.432	$-\S$
Formate $\rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}$	-0.420	38
$\mathrm{H}_{2} \rightleftharpoons 2 \mathrm{H}^{+}+2 \mathrm{e}$	-0.414	25
$\mathrm{NADH}+\mathrm{H}^{+} \rightleftharpoons \mathrm{NAD}^{+}+2 \mathrm{H}^{+}+2 \mathrm{e}$	-0.317	$30 \dagger$
$\mathrm{NADPH}+\mathrm{H}^{+} \rightleftharpoons \mathrm{NADP}^{+}+2 \mathrm{H}^{+}+2 \mathrm{e}$	-0.316	$30 \dagger$
Horseradish oxidase	-0.27	$-\dagger$
$\mathrm{FADH}_{2} \rightleftharpoons \mathrm{FAD}+2 \mathrm{H}^{+}+2 \mathrm{e}$	-0.219	$30 \dagger$
$\mathrm{FMNH}_{2} \rightleftharpoons \mathrm{FMM}+2 \mathrm{H}^{+}+2 \mathrm{e}$	-0.219	$30 \dagger$
Lactate \rightleftharpoons pyruvate $+2 \mathrm{H}^{+}+2 \mathrm{e}$	-0.180	35
Malate \rightleftharpoons oxaloacetate $+2 \mathrm{H}^{+}+2 \mathrm{e}$	-0.102	37
Reduced flavin enzyme \rightleftharpoons flavin enzyme $+2 \mathrm{H}^{+}+2 \mathrm{e}$	-0.063	38
Luciferin* \rightleftharpoons oxyluciferin $+2 \mathrm{H}^{+}+2 \mathrm{e}$	-0.050	$2 *$
Ferrocytochrome $\mathrm{B} \rightleftharpoons$ ferricytochrome $\mathrm{B}+\mathrm{e}$	-0.04	25
Succinate \rightleftharpoons fumarate $+2 \mathrm{H}^{+}+2 \mathrm{e}$	-0.015	30
Decarboxylase	+0.19	$-\dagger$
Ferrocytochrome $\mathrm{C} \rightleftharpoons$ ferricytochrome $\mathrm{C}+\mathrm{e}$	+0.26	25
Ferrocytochrome $\mathrm{A} \rightleftharpoons$ ferricytochrome $\mathrm{A}+\mathrm{e}$	+0.29	25
Ferrocytochrome $\mathrm{A}_{3} \rightleftharpoons$ ferricytochrome $\mathrm{A}_{3}+\mathrm{e}$	$?$	$-\ddagger$
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons 1 / 2 \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}$	+0.815	25

Data from Goddard, 1945. Potentials in all cases are at or near neutrality.
*From McElroy and Strehler, 1954: Bact. Rev. 18.
\dagger From Clark, 1960.
\ddagger From Coddard and Bonner, 1960; In Plant Physiology, a Treatise. Steward, ed. Academic Press, New York. Goddard and Bonner give the NADPH/NADP ${ }^{+}$system as -0.324 , and NADH/NAD ${ }^{+}$ as -0.320 .
§ From Tagawa and Amon, 1962: Nature 195:537-543. The value cited is for spinach ferredoxin.

Carbon Pools in the Major Reservoirs on Earth

Table 5.1 Carbon pools in the major reservoirs on Earth

Pools	Quantity $\left(\times 10^{19} \mathrm{~g}\right)$
Atmosphere	720
Oceans	38,400
Total inorganic	37,400
Surface layer	670
Deep layer	36,730
Total organic	1,000
Lithosphere	
\quad Sedimentary carbonates	$>60,000,000$
Kerogens	$15,000,000$
Terrestrial biosphere (total)	2,000
Living biomass	$600-1,000$
Dead biomass	1,200
Aquatic biosphere	$1-2$
Fossil fuels	4,130
Coal	3,510
Oil	230
Gas	140
Other (peat)	250

From: Falkowski, \& Raven. Acuatic Photosynthesis. p. 130 (1997)

- 4

REDOX REACTIONS ARE COUPLED ON

General Reaction

$$
\begin{aligned}
& A(o x)+n(e) \quad A(\text { red }) \\
& -B(r e d)-n(e) \rightarrow B(o x)
\end{aligned}
$$

Photosynthesis
$2 \mathrm{H}_{2} \mathrm{O}+$ light $\longrightarrow 4 \mathrm{H}^{+}+4 \mathrm{e}^{-}+\mathrm{O}_{2}$
$\mathrm{CO}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow\left(\mathrm{CH}_{2} \mathrm{O}\right)+\mathrm{H}_{2} \mathrm{O}$

Oxygenic Photosynthetic Electron Transport

8)

From: Falkowski \& Raven. Aquatic Photosynthesis. (1997)

Figure 1.7 The secondary structure of the small subunit (16S) rRNA from Chiamydomonas reinhardtii. The structure is inferred from homology with known structures in yeast and prokaryotes. Holiow circies and unpaired regions represent areas of generally higher variability between organisms.

The Nernst Equation
$\left[A_{o x}\right]+n\left[e^{-}\right]+m\left[H^{+}\right] \longrightarrow\left[A_{r e d}\right]$
where \boldsymbol{m} is the number of protons involved in the reduction of $A_{o x}$.
The redox potential for this reaction can be calculated by:
$\mathrm{E}=\mathrm{E}_{\mathrm{m} 7}+59 / \mathrm{n} \log \left[\mathrm{A}_{\mathrm{red}}\right] /\left[\mathrm{A}_{\mathrm{ox}}\right]\left[\mathrm{H}^{+}\right]^{m}$
which can be rewritten as:
$E=E_{m 7}+59 / n \log \left(\left[A_{\text {red }}\right] /\left[\mathrm{A}_{\mathrm{ox}}\right]\right)+59(\mathrm{~m} / \mathrm{n}) \mathrm{pH}$

