Week 4 -- September 23, 2003

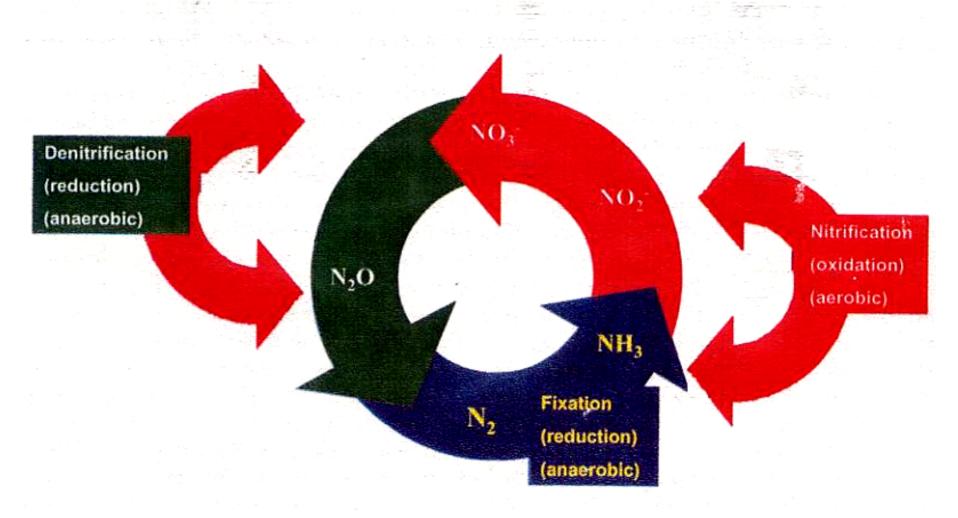
Photosynthesis

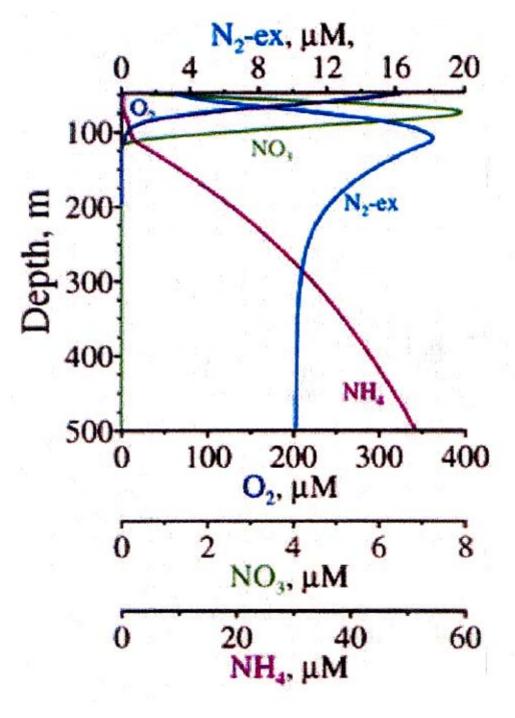
$$106 \text{ CO}_2 + 16 \text{ NO}_1^{-1} + \text{H}_2 \text{PO}_4^{-1} + 122 \text{ H}_2 \text{O} \stackrel{\longrightarrow}{\longleftarrow} \text{C}_{106} \text{H}_{263} \text{O}_{110} \text{ N}_{16} \text{P} + 138 \text{ O}_2$$

$$106 \text{ CO}_2 + 16 \text{NH}_4^{-1} + \text{H}_2 \text{PO}_4^{-1} + 106 \text{ H}_2 \text{O} \stackrel{\longleftarrow}{\longleftarrow} \text{C}_{106} \text{H}_{263} \text{O}_{110} \text{N}_{16} \text{P} + 106 \text{ O}_2$$

Nitrogen-fixation NF=
$$f(O_2, Fe)$$

2 N₂ + 4 H⁴ + 3 CH₂O + 3 H₂O - 4 NH₄⁴ + 3 CO₂ (9)


Nitrification NI=
$$f(O_2)$$
 i.e. $O_2 \ge 20 \mu M$
NH₄' + 2O₂ \longrightarrow NO₃ + 2H' + H₂O


Denitrification ON=
$$f(O_2, NO_3)$$
 i.e. $O_2 \le 5\mu M$

$$C_{106}O_{140}H_{261}N_{16}P + 84.8 \ HNO_3 \quad --------- 106 \ CO_2 + 42.4 \ N_2 + 16 \ NH_3 + H_3PO_4 + 148.4 \ H_2O_4 + 148.4 \ H_2O_5 + 14$$

$$C_{106}O_{130}H_{263}N_{16}P + 94.4 \text{ HNO}_3 + \cdots + 106 \text{ CO}_2 + 55.2 \text{ N}_2 + H_3PO_4 + 177.2 \text{ H}_2O_4$$

The Nitrogen Cycle

Anabaena sp.

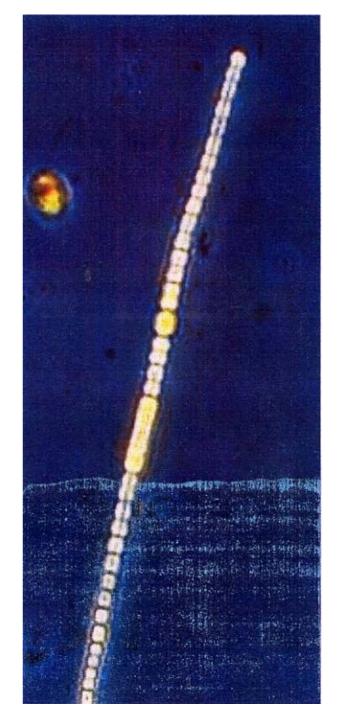
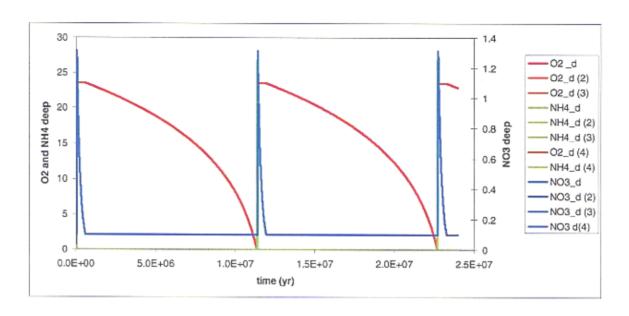
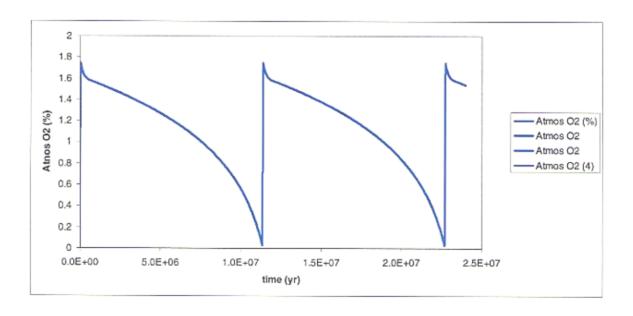


TABLE 42-2


The biochemical processes involved in the nitrogen cycle, their biological occurrence, and their energy yield (from Delwiche 1970).


4 5 "

Process*	Organism	Yield (kcals/mole
Respiration†		
(1) $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$	Virtually universal	686
Denitrification	***	55.5%
(2) $C_6H_{12}O_6 + 6KNO_3 \rightarrow 6CO_2 + 3H_2O + 6KOH + 3N_2O$	Pseudomonas denitrilicans	545
(3) $5C_6H_{12}O_6 + 24KNO_3 \rightarrow 30CO_2 + 18H_2O + 24KOH + 12N_2$	Pseudomonas denitrificans	570
(4) $5S + 6KNO_3 + 2CaCO_3 \rightarrow 3K_2SO_4 + 2CaSO_4 + 2CO_2 + 3N_2$	Anaerobic sulfur bacteria	132
Ammonification		
(5) $C_2H_5NO_2 + 11/2O_2 \rightarrow 2CO_2 + H_2O + NH_3$	Many bacteria, most plants	
	and animals	176
Nitrification		70,000
(6) $NH_3 + 1½O_2 \rightarrow HNO_2 + H_2O$	Nitrosomonas bacteria	66
(7) $KNO_2 + \frac{1}{2}O_2 \rightarrow KNO_3$	Nitrobacter	17.5
Nitrogen fixation		
(8) 2N + 3H₂ → 2NH₂	Some blue-green algae,	
	Azotobactor	- 147.2

^{*}C_BH₂O₅ = glucose; CO₂ = carbon dioxide; C₂H₂NO₂ = glycine (an amino acid); CaSO₄ = calcium sulfate; CaCO₃ = calcium carbonate; HNO₂ = nitrous acid; KNO₂ = potassium nitrite; KNO₃ = potassium nitrate; KOH = potassium hydroxide; NH₃ = ammonia; N₂O = nitrous oxide; S = sulfur.
† Included for comparison.

PO4: 2.122e-3 shelf: 3.0e6 knito2: 5.0e-3 mds:5.0e6 mhd: 100.0e6

Week 4 – September 25, 2003

The Neurst equation Eh (mV) E = (Eo+2.3RT)/(nFlogio[Aon]/[Ared]) where T is Kelvin Ris The Boltzmann gas contex at 298 K (21°C) OEn = (DE + 59)/(nlogio (A or) [Bred] [Sor) whe DEa is the differen for two half cells

Where m is # of protons involved in reduction

The Redox potential for this reachi

نه

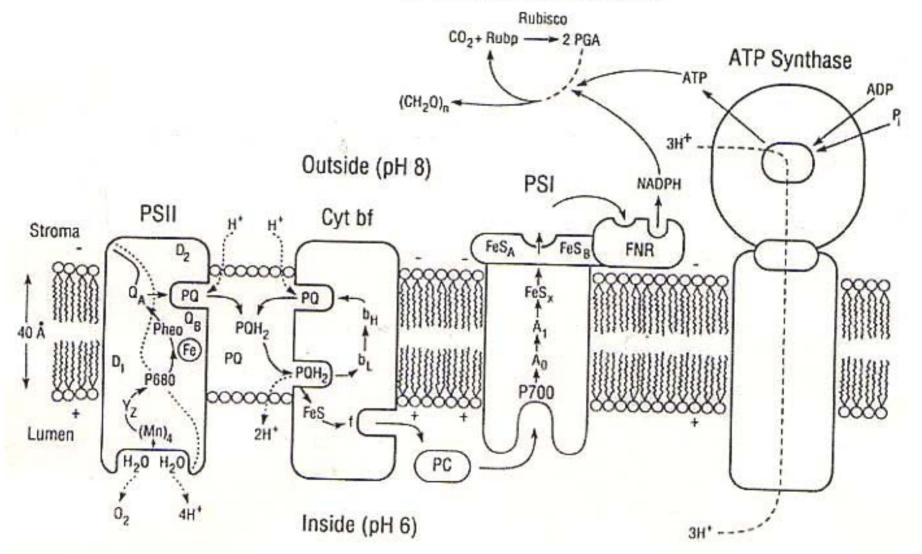

or

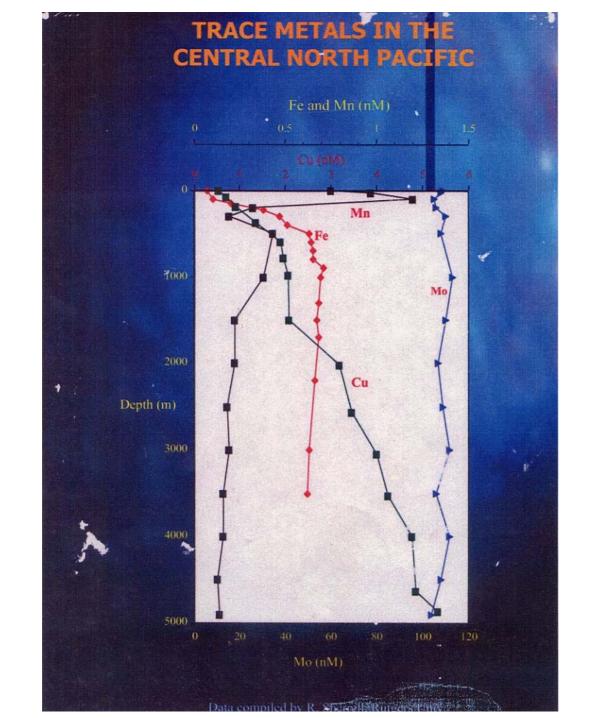
Table 4.1 Mid-point potentials for some common electron carriers in photosynthesis research

	$ox + n(e^-) + m(H^+)$ $\rightleftharpoons red$			Change in $E_m(mV)$ when	
	n	m	E _m (mV)	pH increased by 1 unit	
Dithionite ox/red	1	0	-610	0	
Methyl viologen ox/red	1	0	-450	0	
CO ₂ /CH ₂ O	2	2	-430	-60	
Ferredoxin ox/red	1	0	-430	0	
$H^{+/1}l_2H_2(H_2 1 atm)$	1	1	-420	-60	
NAD*/NADH	2	1	-320	-30	
NADP*/NADPH	2	1	-320	-30	
Menaquinone/menaquinol	2	2	-74	-60	
Plastoquinone/plastoquinol	2	2	-0	-60	
Fumarate/succinate	2	2	+30	-60	
Ubiquinone/ubiquinol	2	2	+40	-60	
Ascorbate ox/red	2	1	+60	-30	
PMS ox/red	2	1	+80	-30	
DCPIP/DCPIPH2	2	2	+220	-60	
TMPD ox/red	1	0	+260	0	
DAD/DADH ₂	2	2	+275	-60	
Cytochrome f (ox/red)	1	0	+350	0	
Cytochrome c553 (ox/red)	1	0	+370	0	
Plastocyanin (ox/red)	1	0	+380	0	
Ferricyanide ox/red	1	0	+420	0	
P ₇₀₀ /P ⁺ ₇₀₀	1	0	+480	0	
O ₂ (1 atm)/2H ₂ O(55 M)	4	4	+840	-60	
P ₆₈₀ /P ⁺ ₆₈₀	1	0	+1100	0	

DAD is 2,3,5,6-tetramethylphenylene diamine; PMS is phenazine methosulphate; TPMD is N,N,N',N'-tetramethyl-p-phenylene diamine; DCPIP is 2,6-dichlorophenolindophenol. (Adapted from Nicholls DG and Ferguson SJ, Bioenergetics. London: Academic Press, 1992)

Carbon Fixation and Reduction

Carbon Pools in the Major Reservoirs on Earth


Table 5.1	Carbon	pools in	the ma	or reservoirs	on Earth
A SHILTER WAS	THE STATE OF THE S	POPULATE ARE	PRES MARKE	ON THOUSE LOSTER	PAN WALLEY FRE

Pools	Quantity (×1013 g)
Atmosphere	720
Oceans	38,400
Total inorganic	37,400
Surface layer	670
Deep layer	36,730
Total organic	1,000
Lithosphere	
Sedimentary carbonates	>60,000,000
Kerogens	15,000,000
Terrestrial biosphere (total)	2,000
Living biomass	600-1,000
Dead biomass	1,200
Aquatic biosphere	1-2
Fossil fuels	4,130
Coal	3,510
Oil	230
Gas	140
Other (peat)	250

From: Falkowski & Raven. Aquatic Photosynthesis. p. 130 (1997)

The manganese clock

One by one, photons progressively build up a charge within the oxygen-evolving centre of Photosystem II until there is enough energy to strip, in one fell swoop, four electrons from two water molecules to produce an oxygen molecule. The five-step process is known as the 'water-oxidising clock' or 'Kok's clock' after its initial propounder.

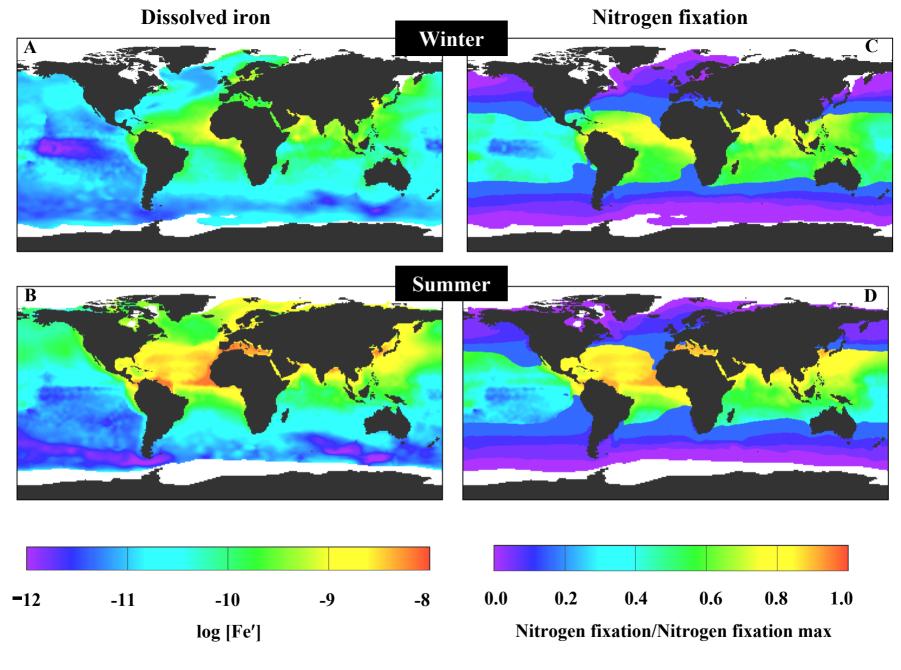


Figure 6. Berman-Frank et al.