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The Carbon Cycle
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- Look at past climatic change; as
controlled by the carbon cycle.

- Interpret the influence of human
changes

(Anthropogenic Perturbations)

- Economic and Trade Policies
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The Faint Young Sun Paradox
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The greenhouse effect

Shortwave solar radiation

Longwave radiation and heat transfer
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and scattered 70% radiated
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This false-color Terra satellite image of
Earth shows infrared heat escaping to
space.

Greenhouse gases trap such heat and
warm our planet.




Relative percentage composition of greenhouse
gases in the Earth’s atmosphere

Carbon dioxide 63%

. Methane 249

Mitrous oxide 109

. Other 3%

Source: The Met Office’s Hadley Centre for Climate Prediction and Research




Distribution of carbon reservoirs on Earth

Atmosphere: 600
(pre-industrial)

\ R/

Soils: 1560 Ocean mixed layer: 1000

Deep ocean: 38,000

Sediments and rocks:
66,000,000

A Major carbon reservoirs (gigatons; 1 gigaton = 107> grams)



Quantity (gt)

Atmosphere 720
Oceans 38,400
Total inorganic 37,400
Surface Layer 670
Deep layer 36,730
Total Organic 1,000
Sedimentary carbonates >60,000,000
Kerogens 15,000,000

Terrestrial biosphere (total)

Living Biomass 600-1,000

Dead Biomass 1,200

Aquatic biosphere

Fossil fuels

Coal 3,510
Oil 230
Gas 140
Other (peat) 250

Falkowski et al, 2002 Science, Vol 290, 291-296



Values of carbon exchange between reservoirs

74

Ocean mixed layer

37

37

Deep ocean
Sediments and rocks ,

0.2

B Carbon exchange rates (gigatons/year)






Carbon Degassing

Volcano

Hot spring

Melting

Morner and Etiope, Global and Planetary Change 33 (2002) 185-203



Methane Hydrates




Cross-section through the Earth
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Chemical weathering — Export of CO, From the
atmosphere

Silicate rock
(CaSi03)

CaSiO; + H,CO, Ca*? Si*4 SiO, + CaCO,

HCO,-
3 Shells of

lons dissolved
- ocean plankton
INn river water

Silicate  Carbonic acid
bedrock in soils

Weathering Transport Deposition
on land In rivers in ocean



The hydrological cycle

Clouds drift inland from the ocean

P -
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v Evaporation from rivers, lakes,

Precipitation as snow 5,4 glaciers and transpiration Evaporation g

from plants and animals g A

. pia from the ocean
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Infiltration below
ground into soil
and rock features Groundwater flow



Chemical Weathering

Ca*?, Na*, H*
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Rock types:
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Ca/MgCO,
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CaC 03 CaCO 3
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Calcite (Carbonate) compensation depth (CCD) -- The
depth in the ocean below which material composed of
calcium carbonate 1s dissolved and does not accumulate
on the sea floor



Factors effecting the rate of chemical weathering
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Atmospheric CO, Levels
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Warmer
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Faint Young Sun paradox: Controlled by the Carbon cycle

Weaker solar radiation Stronger solar radiation

A Early Earth B Modern Earth



Rate of Tectonic Movement
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The Earth’s Orbit
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Long-term changes in tilt: -

Changes 1n the tilt of the
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Eccentricity
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Milankovitch Foreing: Anthropogenic CO, Emission
Variation in Incident Solar

Radiation Due to Natural . -
Vaﬂatlnns |I‘| Eaﬁh,s Ol‘blt | Tonnes per capita ) . Total million tonnes

Canada
land

South Afric:
irazi

Micaragua |

Maximum 1'“5";{, bl 4
Todays tilt =7 L o

Mumnummt:f?{/ Source:International Energy Agency 1998
Carbon Dioxide Concentrations

g .Plangol . Ice Core Data Mauna Loa
Earth's orbit 370 7 { asaid
360 =
: i
) 350 i o
' !
vega North Star y .
F et
v Precession f p
3 - i l- - )
230, / X Precession bl |
oy 3 f ) PR XTI RTI e e | .
o e | H ! .J :

o, /

Milankovitch (1941)



Correlation between pCO», and temperature anomalies Schematic variance spectrum for CO, over
as recorded in the Vostock ice core. the course of Earth's history
420,000 year period
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Review of Lecture 1

Aim: Cover the long-term processes of the
carbon cycle.
- CO, release into the atmosphere.
- Removal of CO, from the
atmosphere via chemical weathering.

These processes have existed in a dynamic
equilibrium that has kept the Earth’s climate
relatively constant.



The Faint Young Sun Paradox
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Atmospheric CO, Levels
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Correlation between pCO», and temperature anomalies Schematic variance spectrum for CO, over
as recorded in the Vostock ice core. the course of Earth's history
420,000 year period
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The Carbon Balance

each year...

e 6.3 Gt from fossil emissions

* 1.6 Gt emitted from land-clearing

* Leaving a net 7.9 Gt in the atmosphere
(estimated)



The Balance

each year...

6.3 Gt from fossil emissions

ca. 1.6 Gt emitted from land-clearing

1.7 Gt net uptake into ocean systems
3.0 Gt into terrestrial systems

Leaving a net 3.2 Gt 1n the atmosphere
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The Organic Carbon Cycle
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The Biological Pump

Large
phytoplankton

% ¢ Microzooplankton
Bacteria

<— Deep water formation

e~ 3,700 m— =

Sea floor

Z.Johanson: S.W.. Chisholm Nature, V 40, p685
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Fertilizing the oceans:

IonEx - Experiments

HNLC: High Nutrient Low Chlorophyllh

Iron is the limiting factor.

Hypothesis to fertilize the ocean with iron, increase
productivity of the phytoplankton, therefore increase
amounts of carbon removed from the atmosphere.
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Ocean Sinks

e Solubility pump
— CO, taken up 1n high latitudes
— Transported to low latitudes
* Biological pump
— 45 Gt C /y uptake via a C pool of 1 Gt C of
phytoplankton
— Mostly 1n low latitudes



The Carbonate System



Speciation of inoganic carbon in aqueous
phase as a function of pH

Relative abundance of species

3 5 7 | 9 11

Falkowski & Raven 1997 pH



Inorganic carbon chemistry
in aquatic environments

Rapid association - dissociation reactions

and
HCO3 & H* +CO03%
Slow hydration (hydroxylation)- dehydration (dehydroxylation)
H O+ CO2 5 H2CO3
and
OH +CO> &5 HCOj3

Falkowski & Raven 1997; Johanson 1982



Alkalinity

Deffeyes Curve

Total Carbon (Tc)



Foraminifera Coccolithophore




Oxvygen Fractionation

O30 = (130/1%O)sample — (130/1°O)standard x1000
(180/160)

standard

2 stable (nonradioactive) isotopes of Oxygen:
160 — 99.8%; 130 the rest.

Samples with large amounts of 130 have more positive
0130 values and are 30-enriched

Samples with small amounts of 130 have more
negative 6'30 values and are 30-depleted



Oxygen fractionation (physical)

- 180 is more easily evaporated than 30
- Leaving water vapor enriched in '°O

- If this vapor falls as precipitation and
becomes locked up in ice-sheets (a cold
climate) then surface waters become

relatively 1*0 enriched

- 01830 values and are 30-enriched



Carbon Fractionation

o13C = (BC/M2C)sample — (I3C/12C)standard x1000
(13C/12C)

standard

2 stable (nonradioactive) isotopes of Carbon:
12C - 99%; 13C the rest.

Samples with large amounts of 13C have more
positive 813C values and are 13C-enriched

Samples with small amounts of 13C have more
negative 813C values and are 13C-depleted



Carbon Fractionation during Rubisco: Fixes CO,
Oxygenic Photosynthesis

9 Preferentially fixes 12C
Dark
Reactions

molecule



Correlation of atmospheric Carbon and Ice Volume
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