The Global Carbon Cycle

Tom Bibby September 2003

bibby@imcs.rutgers.edu falko@imcs.rutgers.edu

The Carbon Cycle

90°

Latitude

- Look at past climatic change; as controlled by the carbon cycle.

Interpret the influence of human changes
 (Anthropogenic Perturbations)

- Economic and Trade Policies

Venus

Earth

States of water in the solar-system

The Faint Young Sun Paradox

The greenhouse effect

This false-color Terra satellite image of Earth shows infrared heat escaping to space. Greenhouse gases trap such heat and warm our planet.

Relative percentage composition of greenhouse gases in the Earth's atmosphere

Distribution of carbon reservoirs on Earth

Major carbon reservoirs (gigatons; 1 gigaton = 10^{15} grams)

Pools	Quantity (gt)
Atmosphere	720
Oceans	38,400
Total inorganic	37,400
Surface Layer	670
Deep layer	36,730
Total Organic	1,000
Lithosphere	
Sedimentary carbonates	>60,000,000
Kerogens	15,000,000
Terrestrial biosphere (total)	2,000
Living Biomass	600-1,000
Dead Biomass	1,200
Aquatic biosphere	1-2
Fossil fuels	4,130
Coal	3,510
Oil	230
Gas	140
Other (peat)	250

Values of carbon exchange between reservoirs

Carbon exchange rates (gigatons/year)

Carbon Degassing

Mörner and Etiope, Global and Planetary Change 33 (2002) 185-203

Methane Hydrates

Cross-section through the Earth

The Ring of Fire

Chemical weathering – Export of CO₂ From the atmosphere

The hydrological cycle

Chemical Weathering

Calcite (Carbonate) compensation depth (CCD) -- The depth in the ocean below which material composed of calcium carbonate is dissolved and does not accumulate on the sea floor

Factors effecting the rate of chemical weathering

Temperature : Rate of chemical reactions

Precipitation: Amount of H_2O

Vegetation: Efficiency of delivery of CO_2 to the soil

Atmospheric CO₂ Levels

Falkowski and Raven 1997

<u>Faint Young Sun</u> <u>Paradox:</u>

Negative feedback controls.

Faint Young Sun paradox: Controlled by the Carbon cycle

A Early Earth

B Modern Earth

Rate of Tectonic Movement

The Earth's Orbit

A No tilt

B 90° tilt

Long-term changes in tilt: Changes in the tilt of the Earth's axis have occurred on a

regular 41,000-year-cycle

Long-term changes in eccentricity: The eccentricity of the Earth's orbit varies at periods of 100,000 and 413,000 years.

Long-term changes in precession: The precessional index changes mainly at a cycle of 23,000 years

Milankovitch Forcing: Variation in Incident Solar Radiation Due to Natural Variations in Earth's Orbit

Anthropogenic CO₂ Emission

Source:International Energy Agency 1998 Carbon Dioxide Concentrations

Milankovitch (1941)

Correlation between pCO₂ and temperature anomalies as recorded in the Vostock ice core. 420,000 year period

Schematic variance spectrum for CO₂ over the course of Earth's history

Review of Lecture 1

Aim: Cover the long-term processes of the carbon cycle.

- CO₂ release into the atmosphere.
- Removal of CO₂ from the atmosphere via chemical weathering.

These processes have existed in a dynamic equilibrium that has kept the Earth's climate relatively constant.

The Faint Young Sun Paradox

Atmospheric CO₂ Levels

Falkowski and Raven 1997

Correlation between pCO₂ and temperature anomalies as recorded in the Vostock ice core. 420,000 year period

Schematic variance spectrum for CO₂ over the course of Earth's history

The Carbon Balance each year...

- 6.3 Gt from fossil emissions
- 1.6 Gt emitted from land-clearing

• Leaving a net 7.9 Gt in the atmosphere (estimated)

The Balance each year...

- 6.3 Gt from fossil emissions
- ca. 1.6 Gt emitted from land-clearing
- 1.7 Gt net uptake into ocean systems
- 3.0 Gt into terrestrial systems
- Leaving a net 3.2 Gt in the atmosphere

The Organic Carbon Cycle

The Biological Pump

Z.Johanson; S.W., Chisholm Nature, V 40, p685

Coccolithophore

Fertilizing the oceans:

IonEx - Experiments

HNLC: High Nutrient Low Chlorophyll Iron is the limiting factor. Hypothesis to fertilize the ocean with iron, increase productivity of the phytoplankton, therefore increase amounts of carbon removed from the atmosphere.

Ocean Circulation

Ocean Sinks

- Solubility pump
 - $-CO_2$ taken up in high latitudes
 - Transported to low latitudes
- Biological pump
 - 45 Gt C /y uptake via a C pool of 1 Gt C of phytoplankton
 - Mostly in low latitudes

The Carbonate System

Speciation of inoganic carbon in aqueous phase as a function of pH

Inorganic carbon chemistry in aquatic environments

Rapid association - dissociation reactions

 $H_2CO_3 \leftrightarrows H^+ + HCO_3^$ and $HCO_3^- \leftrightarrows H^+ + CO_3^{2-}$

Slow hydration (hydroxylation)- dehydration (dehydroxylation)

 $H_2O + CO_2 \leftrightarrows H_2CO_3$ and $OH^- + CO_2 \backsim HCO_3^-$

Falkowski & Raven 1997; Johanson 1982

Foraminifera

Coccolithophore

Oxygen Fractionation

 $\delta^{18}O = \frac{(^{18}O/^{16}O)sample - (^{18}O/^{16}O)standard}{(^{18}O/^{16}O)_{standard}} x1000$

2 stable (nonradioactive) isotopes of Oxygen: ¹⁶O – 99.8%; ¹⁸O the rest.

Samples with large amounts of ¹⁸O have more positive δ^{18} O values and are ¹⁸O-enriched

Samples with small amounts of ¹⁸O have more negative δ^{18} O values and are ¹⁸O-depleted

Oxygen fractionation (physical)

- ¹⁶O is more easily evaporated than ¹⁸O
- Leaving water vapor enriched in ¹⁶O
- If this vapor falls as precipitation and becomes locked up in ice-sheets (a cold climate) then surface waters become relatively ¹⁸O enriched
- $\delta^{18}O$ values and are ¹⁸O-enriched

Carbon Fractionation

 $\delta^{13}C = \frac{(^{13}C/^{12}C)sample - (^{13}C/^{12}C)standard}{(^{13}C/^{12}C)_{standard}} x1000$

2 stable (nonradioactive) isotopes of Carbon: ¹²C – 99%; ¹³C the rest.

Samples with large amounts of ¹³C have more positive δ^{13} C values and are ¹³C-enriched

Samples with small amounts of ¹³C have more negative δ^{13} C values and are ¹³C-depleted

Carbon Fractionation during Oxygenic Photosynthesis

Rubisco: Fixes CO₂

Preferentially fixes ¹²C

Correlation of atmospheric Carbon and Ice Volume

Falkowski et. al. The Global Carbon Cycle: A Test of our knowledge of Earth as a System. Science; 2000 vol. 290 pp. 291-296

Hoffman et. al. A Neoproterozoic Snowball Earth. Science; 1998 vol.. 281 pp 1342-1346

Berner. Examination of hyphotheses for the Permo-Triassic boundary extinction by carbon modelling. PNAS; 2002 vol. 99 pp. 4172-4177

Norris and Rohl. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature; 1999 vol. 401 pp. 775-778