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INTRODUCTION

The field of molecular evolution owes most of its existence to the possibility

of sequencing proteins and nucleic acids. Molecular sequences provide us

with precisely comparable characters, observed at or near the level of the
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gene, which ean be examined in diverse organisms. The amount of data is
very large and rising rapidly. It enables us to work in two modes; we can
either use our knowledge of the evolutionary history of the species to examine
the mechanisms of evolution of the molecules, or we can use knowledge of
the evolution of the molecules to infer tbe evolutionary history of the species.
It is this latter, the inference of phytogenies, that is the concern of this review.
However, tbe techniques used to do this are also relevant to the other task.

In either mode, we make use of a model of tbe evolutionary process. Tbe
central model of molecular evolution is one of random evolutionary changes,
occurring at a stochastically constant rate. It was first introduced by Zucker-
kandl & Pauling (144) in the form of tbe "molecular clock," which is tbe
somewbat stronger assertion that tbe expected rate of change was the same in
all lineages. Analysis of molecular data can often proceed witbout tbat strong
an assumption.

Kimura (81) provided a population-genetic rationale for a molecular clock
by propounding tbe neutral mutation theory of molecular evolution (see also
82). Tbis provided a unified theory accounting for both genetic polymorphism
at the molecular level and change ofthe molecules through time. Tbe theory
does not rule out natural selection against deleterious mutants, and It argues
that most differences in tbe rate of evolution between different molecules and
different parts of the genome are accounted for by conservation of biological-
ly significant sequences.

Theories explaining evolutionary change and polymorphism by natural
selection have been less well developed, partly because there are so many
different possible kinds of selection that it is difficult to choose between them.
Gillespie (59, 60, 61, 63) bas argued that randomly varying selection coeffi-
cients, rather tban neutral mutations, account for most polymorpbism and
molecular evolution.

Tbe controversies between neutralists and selectionists have continued for
20 years with no clear resolution, primarily due to the low resolving power of
the data—natural selection many orders of magnitude weaker than we can
detect in the laboratory can be effective in nature. From the point of view of
tbis review, it does not matter whether nucleotide substitutions are neutral or
selective. Our very inability to resolve the controversy over neutrality is an
advantage when it comes to estimating phytogenies, since we can use the
neutral mutation tbeory as if it were true, confident that for tbe data we can
collect, other theories would make indistinguishably different predictions.

ESTIMATING PHYLOGENIES

Numerical methods for inferring phylogenies from molecular data bave ex-
isted for over 20 years, but tbere is still much confusion in tbe literature about
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tbeir assumptions and properties. For example, there is little coverage of tbem
in textbooks of evolution or of molecular biology; that which exists is usually
a brief and mechanical exposition of a particular metbod familiar to the
author. As a result, the inference of phylogenies often seems divorced from
any connection to other methods of analysis of scientific data.

Nor are most journal articles much help; molecular evolutionists who use
methods for infemng pbylogenies do not engage in much discussion of tbe
properties of tbe methods they use since they focus on the difficult task of
collecting the data. It is not unusual to see papers presenting phylogenies with
little more than tbe most perfunctory description of bow tbey were obtained.
This lack of detail would not be tolerated in presentation of the biochemical
metbods in tbe same papers: editors take no comparable care to see that the
phylogenetic methods are carefully described.

The most effective way of thinking about the inference of pbylogenies is to
adopt a statistical point of view, as with other kinds of data analysis. It is then
seen simply as making an estimate of an unknown quantity, in the presence of
uncertainty, and using a probabilistic model of the evolutionary process.
Viewing the process in this way immediately emphasizes a limitation of most
current discussion of metbods for inferring pbylogenies. Tbey make a single
estimate—a point estimate—but are not designed to tell us wbat other
pbylogenies might also be acceptable. This is partly because ofthe difficulty
of doing so and partly because some exponents do not believe that a statistical
framework is appropriate.

The importance of making some assessment of tbe statistical variability of
the estimates of phylogenies is underscored by two recent studies. Miyamoto
et al (95) studied 7.1 kB of DNA sequence from the t/oj-globin region in apes
and buman and found tbat the most parsimonious tree had chimpanzees and
humans as most closely related, However, this conclusion could be based on
only 13 positions at which there were "phylogenetically informative" patterns
of nucleotide substitution or deletion/insertion events. Of those, eight backed
a human-chimpanzee relationship, three a cbimpanzee-gorilla relationsbip,
and two a buman-gorilla relationsbip. Tbey concluded tbat their data "provide
strong evidence . . . that human and chimpanzee are more closely related to
each other tban eitber is to gorilla." This conclusion is mandated if one
adheres to tbe scbooi of "pbylogenetic systematics," or "cladism," wbicb
focuses on the most parsimonious tree to the exclusion of any statistical
interpretation. An accompanying news article (90, p. 273) quotes Goodman
as saying "if we had only our dataset, the question of a human-chimpanzee
association wouldn't be decisive, and maybe putting all the datasets together
still would leave some room for doubt." There is a discrepancy in tbe firmness
of their conclusion in these two statements. Perhaps this is inevitable if one
excludes statistical analysis as irrelevant but still has the good biological sense
to regard tbe conclusions as uncertain.
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Field et al (51) analyzed 22 animals for sequences of 18S rRNA, using a
distance matrix method with distances derived from the sequences. They
estimated the phylogeny of the metazoa. coming lo suggestive and con-
troversial conclusions (for example, that coelenterates are derived from pro-
tists independently of other metazoans). However, many of these conclusions
are based on short intemal hranches of the tree, whose reality can only he
judged if we have some measure of the variability of length of these branches.
Field et al (51) are concerned about this, saying that "there are no simple
measures of reliability for the position of given branch points" but arguing
that their conclusions are reliably indicated by reproducihility of the branch-
ing order as different sets of species are used to make the tree. Assessment of
the reliability of the results is thus central to any appreciation of the meaning
of this study.

This review therefore focuses on the methods for assessing the reliability of
phylogenies from molecular sequences, after describing briefly the three
major families of methods for inferring phylogenies.

METHODS FOR INFERRING PHYLOGENIES

The three major families of methods for inferring phylogenies are the parsi-
mony and compatibility methods, the distance methods, and maximum likeli-
hood methods. Most other methods fit under one of these headings.

Parsimony and Compatibility Methods

PARSIMONY If eaeh site in a set of sequences has changed only onee in the
evolution of a group, then the newly-arisen base will be shared by ail species
descended from the lineage in which the change occurred. If this were the
case at all sites, then the sets of species having the new bases would be either
perfectly nested or disjoint, never overlapping unless one .set of species was
included in the other. Ii would be possible to erect a tree on which we could
explain the evolution ofthe group with only a single change at each site. This
can be done by inspection of the sets of species defined at each varying site. If
some of these sets of species overlap without being nested, then there is
conflict between the information provided by different sites. Most of the
interesting issues in phylogeny reconstruction are in how to resolve these
conflicts.

A natural way is to count the minimum number of base substitutions that
are required for each proposed tree, (leaving aside for the moment the issue of
insertions and deletions). That tree requiring the fewest changes is preferred.
This is the parsimony criterion, lt was first introduced, in the context of
estimating phylogenies from gene frequencies, by Edwards & CavalH-Sforza
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(17, 18), who called it the "method of minimum net evolution." The word
"parsimony" was first associated with it when Camin & Sokal (6) published
an influential description of this methtKl for discretely coded morphological
characters. Eck & Dayhoff (16) described the first application to molecular
sequences. The algorithms for counting changes among states were given by
Kluge & Farris (85; see also 28) on a linear or branched scale, and by Fitch
(53) for nucleotides among which changes can occur from any one to any
other.

The parsimony method is usually justified by the school of "phylogenetic
systematics" by asserting that the count of extra state changes on a tree counts
the number of ancillary hypotheses that must be erected to explain evolution
in the group, and by identifying the criterion with William of Ockham's
principle of parsimony. "Occam's Razor" (142). Along with this view goes
the assertion that the use of parsimony requires no substantive assumptions
about evolutionary processes, a position that when viewed from the stand-
point of statistics, is questionable at best.

Normally, parsimony methods applied to nucleotide substitutions count
only base substitutions. Sankoff et al( 118) applied a method, later described
by Sankoff & Rousseau (120) and Sankoff (119), that performs alignment of
sequences at the same time as it estimates the phylogeny by minimizing a
weighted count of substitutions and deletion/ insertion events. A more recent
description of the class of methods is given by Sankoff & Cedergren (121).
This process is computationally intensive but will receive more attention
when sequence aligners realize, as they must, that multiple-sequence align-
ment is best carried out with explicit reference to the phylogeny and that one
cannot simply treat all sequences symmetrically, when some may be near-
duplicates of others. The realization of this will have a large impact on
multiple-sequence alignment and may cause some embarassment when it is
noted that David Sankoff and his colleagues understood the matter elearly in
1973.

The particular case of protein sequences has caused some difficulties. In
Eck & Dayhoffs original parsimony method for protein sequences (16), they
allowed any aniino acid to be replaced by any other. Subsequently Dayhoff &
Eck (14) used a set of weights that reflected the empirical prohahilities of
replacement for each possible change. Fitch (53) suggested counting not the
number of amino acid replacements but the underlying numher of base
substitutions implied by the amino acid sequences. Because of the complexity
of the mapping from codons to amino acids, this is not simple to compute.
Algorithms for counting the number of base substitutions have been given by
Moore et al (97), Moore (98), Fitch (54), Fitch & Farris (55), and Moore
(99). In my own program for protein parsimony in the PHYLIP package, I
have preferred to count only those base substitutions that also change the



526 FELSENSTEIN

amino acid, under the assumption that the synonymous changes are sub-
stantially more probable and should thus be deemphasized. This is more
easily accomplished than counting all base substitutions.

COMPATIBILITY. A method closely related to parsimony is compatibility
analysis (usually called a "clique method" by those who dislike it). It uses a
different criterion for resolving conflict among characters. A character is
compatible with a phylogeny if its evolution can be explained without assum-
ing that any state arises more than once. Thus a site that shows three bases. A,
C. and T, is compatible with a phylogeny if the observed data could arise with
only two nucleotide substitutions. The compatibility method iinds that tree on
which the maximum number of sites are compatible with the tree.

The compatibility criterion was first proposed for discrete two-state mor-
phological characters by Le Quesne (89). Estabrook & Landrum (23) and
Fitch (56) showed how to determine whether two nucleotide sites are compat-
ible with each other, in the sense that there must exist a tree on which they can
both evolve with no extra changes. However, Fitch (56) also showed that a set
of sites that are all pairwise compatible may not be jointly compatible, in that
there may not exist one tree on which all can evolve without extra changes.
This is in contrast to some classes of multistate morphological characters for
which Estabrook et al (24. 25; see also 26) proved that when characters are all
pairwise compatible, they must be jointly compatible, and the tree fitting all
of them can be found very easily.

Although the absence of this pairwise compatibility theorem for nucleotide
sequences makes it somewhat harder to find the tree with the most sites
compatible with it. compatibility methods are no harder to use than parsimony
methods. It should be apparent that the two classes of methods are closely
related, although some authors, e.g. Wiley (142), have felt otherwise.

Distance Matrix Methods

Distance methods, the second major category, fit a tree to a matrix of pairwise
distances between the species. For nucleotide sequence data the distances
might, for example, be calculated from the fraction of sites different between
the two sequences. The phylogeny makes a prediction of the distance for each
pair as the sum of branch lengths in the path from one species to another
through the tree. A measure of goodness of fit of the observed distances to the
expected distances is used, and that phylogeny is preferred which minimizes
the discrepancy between them as evaluated hy this measure. There is a
widespread misconception that distance methods assume a molecular clock,
mostly because molecular evolutionists using these methods have also tended
to make such an assumption and invoke it as the reason why their methods
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work. It is possible to either assume or not assume a molecular clock when
using distance methods.

Fitch & Margoliash (52) introduced the first distance matrix method, and
Cavalli-Sforza & Edwards, (8) had independently produced another. Both
were least squares methods. If the Dy were the observed distances and the dij
the expected distances computed from the tree, then the measure of lack of fit
was

which is a weighted leasl squares measure. The weights u-y were l/D;/ for
Fitch & Margoliash's method, and 1 for Cavalli-Sforza & Edwards's method.
These represent a different weighting of discrepancies for large and small
distances.

Many other distance matrix methods have been introduced. Some such as
Farris's (30) "distance Wagner method," Li's (91) method, Tateno et al's
(135) "modified Farris method," and Saitou & Nei's (116) "neighbor joining
method" are not defined in terms of a measure of lack of fit, but only as the
result of following a certain algorithm which joins species and calculates
branch lengths. The algorithms involved are designed to yield an exact result
when there is a tree that perfectly fits the data, but it is less easy under this
approach to see how different kinds of discrepancies from a perfect fit are
weighted. This makes statistical analysis of the properties of these methods
particularly difficult.

Chakrahorty (12) has taken the opposite tack and derived a least squares
method from a statistical model, one which tries to take into account the
variances of the distances and the correlations between them, when protein
sequences are used. Hasegawa et al (64, 67) have derived a distance method
from statistical properties of nucleic acid sequences. Hogeweg & Hesper (70)
have derived a distance from pairwise alignments of molecular sequences and
have inferred phytogenies hy using this in a distance matrix method. This
differs from the approach of Sankoff et al (118) in that there need not he any
consistency between the alignments for different pairs of species—Hogeweg
& Hesper's method is thus necessarily more approximate.

The widely used UPGMA method, or "average linkage method" (Sokal &
Sneath. 129) of constructing a tree from a distance matrix is also defined as
the result of applying a certain algorithm. That algorithm would work per-
fectly only if the dala were generated hy a ckKklike evolution—if the data
were an exact fit to a nonclocklike tree the UPGMA method could give
erroneous results (13, 29, 96). The UPGMA method is. however, not as
arbitrary as might first seem. Farris (27) and Chakrahorty (12) have pointed
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out that it assigns the branch lengths (or node levels) so that the sum of
squares of differences between observed and expected distances is minimized.
The topology is found somewhat arbitrarily as a result of the clustering
algorithm rather than by an explicit search among alternatives, but otherwise
the relationship between versions of least squares that assume a clock and the
UPGMA method is a close one.

Likelihood Methods
Maximum likelihood is the most general method of deriving statistical es-
timates. In essence it is quite simple—one has a model (M) and data (D). The
likelihood of a tree (T) is the probability of the data given the tree and the
model, P(D; T, M), considered as a function ofthe tree. The probability of all
possible sets of data must add up to one, but when the data is held constant
and the tree is varied, the ditierent values of P(D; T, M) need not add up to
one and are called likelihoods rather than probabilities. The maximum likeli-
hood method simply chooses that tree T which maximizes the likelihood, thus
maximizing the probability that the observed data would have occurred.
Likelihood methods are not as widely known as they ought to be, because the
computation of the likelihood frequently involves taking products of a large
number of quantities or sums of logarithms. Before the existence of comput-
ers likelihoods were hard to compute, and methods based on them were
regarded as arcane and impractical, They have only recently begun to make
their way into the elementary statistics texts studied by biologists.

It was inevitable that maximum likelihood would be applied to estimating
phylogenies. Edwards & Cavalli-Sforza (!8) made the first attempt, with gene
frequencies as the data. The first application to molecular sequences was by
the famous statistician Jerzy Neyman (105), who used a simple model of
symmetric change among amino acids or nucleotides, with changes occurring
randomly and independently at different sites. This was closely similar to the
model implicit in Jukes & Cantor's (75) formula relating the time of di-
vergence of two species to the probability of net change in a base. It ignores
differences in the rate of transitions and transversions. and it does not allow
for different frequencies of the four bases or different rates of change at
different sites. Neyman investigated only the case of data from three species.

Kashyap & Subas (77) wrestled with the problem of combining Neyman's
three-species trees for all triples of species in a data set into one larger tree.
Their methods were somewhat ad hoc. I gave (38) computationally effective
methods of computing the likelihood for a tree with an arbitrary number of
species, and of finding branch lengths that maximize the likelihood. The
model used allows unequal base composition and does not assume a molecu-
lar clock. More recently it has been extended to allow differences between the
rates of transition and transversion and to allow different prespecified rates of
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change at different sites (J. Felsenstein. in preparation). Hasegawa and his
colleagues have applied maximum likelihood to a number of nucleic acid
sequence data sets (65. 66, 68).

Bishop and Friday (3a) have used several models of base substitution to
construct a maximum likelihood method for inferring rooted phylogenies
under the assumption of a molecular clock. They have applied these to some
published nucleotide sequencies on mammals, and discuss extensively some
of the changes that would have to be made in models to make them more
realistic.

Barry & Hartigan (3) have developed a maximum Iikelihtx)d method
which, instead of assuming that the parametric form of the matrix of base
changes is known in advance, estimates it from the data. This turns out to
simplify computations considerably. The disadvantage is that it allows too
great a flexibility in the probabilities of change between specific bases, so that
what it gains in flexibility it may lose in power from having lo estimate more
parameters. Processes of base change probably do not differ much in related
species, a factor Barry & Hartigan's method does not take into account. On
the other hand, methods such as my own assume that the processes do not
change at all in different parts of the tree. The truth must lie somewhere in
between.

Saitou (117) has derived conditions under which maximum likelihood on a
clocklike tree will give the correct results, and compared those to conditions
for parsimony and UPGMA methods. For three and four species the likeli-
hood method is found to behave similarly to UPGMA. It is not clear whether
this will generalize to more species.

It is worth noting here that maximum likelihood methods have also reeently
been applied to restriction sites data (76, 15, 102, 92, 124) where they are
needed to correctly account for the relative rates of parallel loss and gain of
sites.

STATISTICS AND THE JUSTIFICATION OF METHODS

It is unsatisfactory to have several competing approaches if it is not un-
derstood how they differ in their assumptions, and thus when one ought to
prefer one to another. The two main approaches to justifying phylogenetic
methods are the hypothetico-deductive and the statistical. The former has
been applied mostly to parsimony methods, under the belief that William of
Ockbam's principle that entities ought not to be multiplied unnecessarily
(called "Occam's razor") is directly related to parsimony, which is said to
measure the number of hypotheses that must be erected to explain a data set.
That in tum is related, by authors such as Wiley (141, 142), to Popper's
hypothetico-deductive model of falsification of scientific hypotheses. The
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central flaw in this argument is that falsification is not absolute—when Wiley
(141) says, "the phylogenetic hypothesis which has been rejected the least
number of times is to be preferred over its alternates," he is trying to stretch
the original Popperian argument to cover parsimony, which may have every
possible phylogeny rejected by requiring extra changes of state in one or
another character. Rejection then inevitably is not absolute, and statistical
concepts must be admitted through the back door.

The other, preferable way to justify methods is to consider them as methods
of statistical inference and investigate their statistical properties. The biolo-
gical assumptions of a method may be found by asking which ones endow it
with reasonable statistical properties. The issue is subtle because statisticians
do not agree on the most important properties of a statistical method.

Consistency

A statistical estimation method is consistent if it approaches the true value of
the quantity as larger and larger amounts of data are accumulated. For
example, the mean of a sample from a normal distribution gets closer and
closer to the quantity it estimates, the true population mean, as the number of
data points increases. Statisticians differ on how fundamental a property
consistency is: Bayesians and advocates of likelihood relegate it to a lesser
role while most others consider it a fundamental desirable property of an
estimation method.

Maximum likelihood methods are usually consistent, with the exception of
certain cases where the number of quantities being estimated rises at least at
the same rate as the number of data points. In the case of phylogenies, the
parameters being estimated are the branch lengths of the tree but may also
include the states of hypothetical ancestors that occur at interior nodes of the
tree. If only branch lengths are estimated, the number does not change as
more nucleotide sites are considered. However, if we are also estimating the
nucleotide states in the interior nodes of the tree, the number rises pro-
portionately to the length of sequences considered, and the estimate may be
inconsistent. This will become relevant when we discuss the inconsistency of
parsimony and compatibility methods.

CONSISTENCY AND DISTANCE MATRIX METHODS Distance matrix
methods are consistent when the distances are derived from sequences and
certain conditions are met. We expect that as the number of sites sequenced
rises, the distances measured approach more and more closely to their ex-
pected values. If the expected values are the sums of the branch lengths
through the true tree from one species to another, then in the limit there will
be a perfect fit between the tree and the distance matrix, and the method will
be consistent.
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We must transform the distances so that their expected values are equal to
the total branch lengths intervening between two species. This is an important
criterion often overlooked when distance matrix methods are applied. Chakra-
borty (12) made an effort to correct the distances derived from protein
sequences to achieve linearity. Olsen (106, 107) also has carried out such a
correction when using distances derived from nucleotide sequences. Farris
(31, 33, 34) and I (43. 46) have discussed different options for making this
correction, either transforming the distances or using a nonlinear least squares
method.

Simple use of a Fitch-Margoliash or other least squares method with a
distance that measures the fraction of nucleotides different between sequences
is inconsistent, The expected distance between two species rises at first nearly
proportionally to the intervening branch length, but as we consider longer
paths through the tree we expect more and more cases in which one substitu-
tion overlays or reverses another. For example, when we expect 10% nucleo-
tide sequence difference between nodes A and B on a tree, and a further 10%
between B and C, then under a simple symmetric model of change among
four nucleotides (such as that of Jukes & Cantor. 75) we expect that 1% ofthe
sites have been changed twice between A and C. One third of these double
changes will cause reversion to the original nucleotide, so that the net
difference between the sequences of A and B is expected to be not 20% (as
would be predicted by adding up the branch lengths) but 19.67%. Thus the
branch lengths will not be additive: the expected distances will be less than the
sum ofthe branch lengths, particularly when that sum is large. To the extent
that a distance method is trying to fit the tree to both long and short distances,
it will make the branches too short as a result of this problem of overlaid
substitutions.

This may not seem like a very serious problem with the example given, but
it becomes severe with larger differences between sequences. As two DNA
sequences become very far apart in the tree, the branch length between them
should rise towards infinity, but their sequence difference cannot rise above
100%. and in fact will approach 75% under the Jukes-Cantor assumptions.
With more realistic models of nucleotide substitution, involving unequal
frequencies of the four bases, the problem becomes even worse. Branches in
the tree may be substantially shortened in order to have the branch length
between less closely related species fit a distance of 75% which actually
reflects much larger amounts of nucleotide substitution.

The objections raised by Farris (31, 33, 34) to the use of distance matrix
methods consist in part simply of pointing out this problem. In my responses
(43, 46) I have agreed that this is potentially a problem, while emphasizing
that there are ways to correct it. The remainder of Farris's critique is that the
branch lengths estimated may not be achievable. Thus, we may estimate a
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branch length of 017 in a case in which the data consists of sequences of
length 50 nucleotides, while it is impossible that the actual sequences at the
two ends of that branch differed by exactly 17%. I have pointed out (43, 46)
that this causes no problem if we think of making a statistical estimate of the
tree. The branch lengths are expected differences between two sequences; the
expected difference is a weighted average ofthe distance over all possibilities,
and as such need not be a quantity that is equal to any of the actual
differences. Farris's objections do not apply if one adopts, as I am urging that
we do, a statistical inference approach to inferring phytogenies.

CONSISTENCY, PARSIMONY, AND COMPATIBILITY If the isSUe of COn-
sistency of distance methods is complicated, the issue with regard to parsi-
mony and compatibility methods is positively baroque. It interacts with the
logical justification of parsimony and with the question of when parsimony
and compatibility methods are equivalent to maximum likelihood methods.

Cavender (9) and I (36) discovered a simple case in which parsimony and
compatibility methods would be inconsistent. The example involves a four-
species case with unequal rates of evolution among two lineages. The sites are
assumed to change independently. The original case involved two-state
characters, but an equivalent example can be constructed for four-state
characters such as nucleic acid sequences (38). The topology of the unknown
true tree is of the form ((A. B), (C, D)). The branches leading to species A
and D are long, and all the others are short, where by length we mean not time
but expected amount of change, as no molecular clock is assumed. Random
change along this tree, in accordance with the branch lengths, generates many
sites that have parallel changes in the lines leading to A and D, as one quarter
of cases in which both of those lines change result in the same nucleotide
arising in both of the lineages.

If the internal branches ofthe tree are short enough, it generates fewer siles
which are "phylogenetically informative" in the sense of having one base in
common between species A and B. and another in common between C and D.
The upshot is that we expect to have more sites providing false evidence that
the tree topology is (A, D). (B. C) than provide evidence ofthe true topology
(A, B), (C. D). As we collect more and more sites, the chance that a
parsimony method will chose this particular wrong topology becomes higher
and higher, ultimately approaching 100%. With four species there is no
difference between parsimony and compatibility methods, which in these
cases always give the same results; thus, this Is a counterexample to the use of
either parsimony, or compatibility.

I was able (36, 41) to derive conditions for some particular patterns of
branch length, showing for what combinations of their lengths parsimony
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methods would be inconsistent. There was a trade-off between inequality of
the expected rates of evolution in different branches ofthe tree and the overall
rates of change: with less change one needs more inequality of rates to have
inconsistency, whereas with clocklike evolution no combinations of branch
lengths led to inconsistency. With grossly unequal lengths of branches,
inconsistency could occur even with little expected change. Hasegawa &
Yano (66) carried out computer simulations of the evolution of DNA sequ-
ences and verified these patterns.

Hendy & Penny (69) have developed a clever method using matrix algebra
to generate the expected frequencies of differeni patterns of characters,
including some models of nucleotide sequence change for cases with more
species. They could show that the same phenomena occurred in some Hve-
species cases, but with a surprising difference. They found the same pattem
that "the long branches of the tree attract each other." causing inconsistency
when the long and short branches are sufficiently different in length. But they
were able to find cases in which parsimony (and incompatibility as well) were
inconsistent, even with a perfect molecular clock, which disproved my con-
jecture of a trade-off between clockness and inconsistency. Apparently parsi-
mony and compatibility are even less weil-behaved than I had inferred. The
two patterns that continued to hold up were that the inconsistency arose when
branch lengths were unequal, and the smaller the overall rate of change the
more unequal the branch lengths need to be to cause inconsistency.

An intriguing modification of parsimony methods is proposed by Hendy &
Penny (69). They suggest that instead of counting changes of state, we should
use the number of observed changes in each branch of the tree to reconstruct
the estimated actual number of changes. Thus if a branch shows 10 changes
out of 20 characters, we can compute (for a simple four-state nucleic acid
model) how many substitutions have not been seen because they have been
reversed or overlaid by other substitutions. They suggest that trees be scored
according to this augmented number of substitutions. In their consistency
calculations they found that this augmented parsimony method was always
consistent, even when ordinary parsimony was not. This is an interesting
approach to avoiding the inconsistency problem entirely. There is as yet
no proof that it always does avoid the problem, and there may be ambigui-
ties as to where changes occur in the tree which affect the augmentation cal-
culation. The method may not yet be fully developed, but it is certainly
promising.

ARGUMENTS AGAINST THE COUNTEREXAMPLES The examples of the in-
conslstency of parsimony and compatibility have generated considerable
controversy, because if they are accepted they create a problem for the
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hypothetieo-deduetive approach to inferring phylogenies. FarTis (32) has
pointed to the unrealistic nature ofthe model under which the inconsistency is
derived—independently evolving characters, all evolving at the same average
rate symmetrically among four (or two) states. His line of argument is
unusual: "This is not to say that parsimony requires no assumptions at all; it
presumes, one might say, that Felsenstein's models are unrealistic. But as that
assumption seems generally agreed upon, that is not much of a criticism of
parsimony" (32). The difficulty with his argument is that it implicitly pre-
supposes that the special assumptions of the mode! are responsible for the
inconsistency, and that a more realistic model would not be inconsistent.
There is in fact no evidence for that whatsoever; there is no reason for
believing that the inconsistency would not also occur in more realistic models.
In fact, it ean easily be shown that variation of rates of evolution among
characters and correlation of the characters in some patterns will leave the
inconsistency unchanged. Farris's argument therefore is insufficient reason
for ignoring the possibility of inconsistency. His assurance that no con-
troversial assumptions are involved in using parsimony is wrong—there is in
fact no guarantee that parsimony will work well in any realistic case.

Sober (127, 47) has taken me to task, with considerable justification, for
overstating the implicit assumptions of the parsimony methods by saying that
they require evolutionary rates (as reflected in the expected amounts of
evolution in branches) to be small or nearly equal in different lineages for
parsimony to be consistent. Hendy & Penny's (69) work shows that for five
species the eonditions for parsimony to be consistent seem even more strin-
gent than my projection based on four species. Nothing general is known
about the conditions for consistency for more general models.

Carpenter (7a) summarized the state of affairs after the debates between
Sober and myself by saying that Sober has "at least wrung from Felsenstein
the retraction of his elaim that parsimony necessarily assumes low rates of
evolution." I see the matter differently. We know what the conditions are for
inconsistency of parsimony for some particular four- and five-species models,
and these suggest that the problem may extend well beyond those cases. Is
this reason for complacency on the part of users of parsimony methods? None
of the advocates of the position that parsimony has no controversial assump-
tions has presented any general proof that this is so.

Likelihood as Justification

LIKELIHOOD JUSTIFICATIONS HOR PARSIMONY Sober (126, 127. 128, 47)
has taken a different tack, rejecting the notion of consistency itself as a
fundamental property a statistical estimator ought to have. There are statistical
positions (notably Bayesian and likelihoodist positions) in agreement with
him in this, so that the matter unfortunately involves the philosophical
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foundations of statistics, which biologists are unlikely to resolve on their own.
Many statisticians, probably a majority, accept consistency as a fundamental
desirable property of an estimation method, and I think many biologists agree.

Sober argues against the relevance of the consistency property because he is
defending the use of the parsimony criterion. It is fair to ask what positive
properties of parsimony a supporter would invoke. Sober's advocacy is based
on his assertion Ihat parsimony is the same, under noncontroversial assump-
tions, as maximum likelibood. His basis for advocating parsimony is a
likelihoodist position that takes maximum likelibood as fundamental, regard-
less of whether tbe resulting estimator is consistent. This is a well-known
statistical position, so again biologists are unlikely to resolve tbe matter by
themselves.

Sober's position depends on some proof tbat parsimony methods are gener-
ally identical to maximum likelihood metbods. He bas presented sucb a proof
{126. 127) in tbree-species cases with two-state characters, but it contains a
step in which a particular internal branch length in the 3-species trees being
compared is assumed to be identical. Recently, be retracted this proof as
flawed (47, 128). At present we have no general proof of a correspondence
between likelihood and parsimony, so tbat even if one takes a likelihoodist
position and rejects the relevance ofthe consistency property, there is no clear
guide as to what method of pbylogenetic inference is to be used, other tban
direct use of maximum liketibood.

I have presented one proof (35) that wben rates of evolution per unit branch
length are taken towards zero witb tbe lengths of branches beld constant, then
for any two trees and with a fairly general model of change among cbaracter
states, the tree of higher likelihood will be the one with the fewer changes of
character states. This proof establishes an equivalence between likelihood and
parsimony, but only for cases witb low expected amounts of character state
change. This at least makes intuitive sense: if we expect very little change,
then that tree which requires tbe fewest of tbese improbable events will
provide tbe most credible explanation of the data. Tbe problem with using this
argument as a justification of tbe use of parsimony metbods is that in many
data sets we see rates of evolution that are not small.

COMPATIBILITY AND LIKELIHOOD In the Studies showing that parsimony
methods can be inconsistent, the cases investigated do not discriminate
between parsimony and compatibility—since the two metbods always yield
the same result in those four- and five-species cases, the proof of in-
consistency applies equally to compatibility methods. The debate bas centered
around parsimony since it is in more widespread use. and tbe school of
systematists most committed to a hypothetieo-deduetive approach to
phylogenetic inference identifies that approach with parsimony.
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When we consider instead the circumstances under wbicb compatibility and
likelihood methods are identical, we get a slightly different answer than we do
for parsimony, and the differences illuminate the assumptions of the parsi-
mony and compatibility metbods. In my examination of sufficient conditions
for likelibood to be identical to parsimony when there are two character states
(37) I investigated a variety of parsimony methods, including Dollo. Camin-
Sokal. and polymorphism parsimony, and also compatibility metbods. For
compatibility to be identical to likelibood. it turns out that the homoplasy
(parallelism or convergence) should not arise from random evolutionary
changes occurring at a slow rate in all characters, but ratber tbat most
characters should bave a very low rate of change and a few should have a bigh
rate of change or of misinterpretation.

Compatibility methods tend to ignore the information from those characters
tbat do not fit a phylogeny, although they do consider various possibilities and
try to ignore as few characters as possible. If we assume that all characters
will change at a low rate and hence tend to fit the true phylogeny, except for a
few tbat will be almost useless because of misinterpretation or high rates of
evolution, this behavior becomes explicable. Once a character has exhibited
more tban one change on a tree, it becomes probable that it is one of these
misinterpreted or rapidly evolving characters, wbose distribution should bave
little or nothing to do with tbe phylogeny. These characters are expected to be
rare, so that we should assume as few of them as possible.

Thus tbe different treatment by parsimony and compatibility methods of
characters tbat do not fit the tree is different in a way that corresponds to a
diffferent assumption about the source of tbe homoplasy. It is natural to
suggest tbat compatibility metbods implicitly assume tbis sort of pattem of
evolutionary rates, but as with tbe case of parsimony, we can only say tbat
they assume this in tbe few cases tbat have been investigated, without having
a prooof of what tbey assume in general.

An Interesting issue tbat arises with use of compatibility metbods on
nucleotide sequences Is to determine when we are to consider a site to be
incompatible with a tree. The usual definition is that if each nucleotide state
arises no more than once, it is compatible. However, all the likelibood
arguments suggest otherwise—that two changes in the same site, even if they
lead to different nucleotides. should be counted as evidence that this site has a
bigh rate of change and. hence, should be ignored in making the tree. When
tbis is used as the criterion for compatibility, tbe pairwise compatibility
theorem can be used and construction of trees becomes mucb more
straightforward. As far as I know this approach has never been used.

CHARACTER v̂ EiGHTiNG AND LiKELiH(X^D I bave discussed (39) tbe
assumptions of compatibility and parsimony in tbe context of character
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weighting. When different characters bad different but small rates of evolu-
tion, it could be shown that a weighted parsimony metbod was identical in
result to a maximum likelibood method, the weights being related to the
negative logarithms of the rates of character change. Thus the faster a
character is known to change, tbe less weight it should be given. The lower
tbe rates of change the more equally tbe characters should be weighted, so tbat
unweighted parsimony methods may implicitly assume a low rate of change.

If one also assumed that a small fraction of tbe characters evolved at sucb a
bigh rate as to be completely devoid of information, then a parsimony metbod
with a threshold emerged as equivalent to maximum likelihood. If the proba-
bility that a character has a bigh rate of change is the same as the probability
that it has four changes of character state on the tree, then the threshold should
be set so tbat in each cbaracter we count the number of steps up to four,
counting four for tbat character no matter how many more steps there are. For
tbese two-state characters, a threshold value of two turns out to be equivalent
to using a compatibility method. A cbaracter is then simply evaluated as to
whether it has more than one change, and the minimization of the count of
changes modified by the threshold is identical to maximizing the number of
characters that can be interpreted as uniquely derived. Thus we have a family
of methods that smoothly connect parsimony and compatibility, showing tbat
tbey are indeed closely related. A similar family was presented by Farris
(27a). although without a likelihood justification. He (32) has commented on
these issues at length. Anotber a posteriori weighting method was developed
by Penny & Hendy (110).

STATISTICAL TESTS OF PHYLOGENIES

So far. all of the discussion has been in terms of consistency of the point
estimate of a pbylogeny, wben the estimate is. or is not. identical to a
maximum likelihood metbod, and wbat tbis may mean about the implicit
assumptions of tbe methods. The question of how to obtain confidence
intervals and carry out statistical tests is in a relatively primitive state by
comparison, but it is of greater practical importance to the molecular evolu-
tionist. We cover here tbe suggestions tbat bave been made for tests and
confidence intervals based on parsimony methtxis. distance metbods, and
likelihood methods, and then data resampling approaches such as bootstrap
methods.

Tests Based on Parsimony Methods

CAVLNDER'S CONFIDENCE INTERVAL The pioneering investigations of
how confidence intervals could be constructed based on parsimony methods
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have been described in papers by Cavender (9. 10). He examined the four-
species case with characters having two states. 1 have reworked his calcula-
tions (41) for the case of four states, such as nucleotide sequences. Cavender
used as his statistic the number of differences in substitutions between the
most parsimonious phylogeny and its next best competitor. He asked for what
true phylogeny there would be the most evidence favoring the wrong topolo-
gy, as judged by parsimony. He discovered the inconsistency problem, that in
the worst case all "phylogenetically informative" characters might be ex-
pected to favor the wrong topology.

In the nucleotide sequence case, with a simple symmetric model of base
change, it turns out that 3/16 of all characters would be expected to be
"phylogenetically informative" and favor the wrong tree (41). In the original
two-state case Cavender found the corresponding number to be 1/3. Each of
these "phylogenetically informative" characters creates a one-substitution
difference between the wrong tree and the correct one. One can only conclude
in favor of the most parsimonious tree if the evidence is stronger than that.
Cavender therefore asked whether the number of steps favoring the most
parsimonious tree over its next best competitor was significantly greater than
one third of the number of characters. For the nucleic acid case one asks
whether it is significantly greater than 3/16 the number of sites. Note that it is
the total number of sites that is used, not the "phylogenetically informative"
ones, 1(K)% of which can favor the wrong tree in the worst case.

Table 1 shows the results recalculated for the nucleic acid sequences case.
The third column gives the significant number of steps expressed not in terms
of all sites but in terms of all varying sites, so that we have omitted those that
have the same base in all four species. The calculation in terms of varying
sites uses the fact that in the worst case 1/16 of the sites will be invariant, so
that the expected fraction of sites which favor the wrong tree hy one substitu-
tion is 3/15 per varying site rather than 3/16 per site.

THE CONFIDENCE INTERVAL ASSUMING A CLOCK Cavender's Calculations
assume no evolutionary clock. When a clock can be assumed, the bounds can
be made much tighter. I have (45) used the fact that when there is a clock the
worst case is no longer one that has all of the "phylogenetically informative"
sites backing the wrong tree. With three species (or four, if one has an
outgroup) the worst case is the trifurcation—this is the tree of one topology
most likely to give evidence favoring another topology. Each "phylogeneti-
cally informative" site has a 1/3 chance of favoring each of the three possible
tree topologies. For this worst case, one can, by considering ali possible data
outcomes in turn and working out the probability of each, tabulate the
distribution ofthe number of steps by which an incorrect tree will be favored.
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Table 1 95% point of distribution of difference in number of
substitutions

Sites

2
3
4
5

10
13
15
20
25
30
40
50

100
200
500

1000
2000
5000

10000

All sites

2
3
3
3
5
6
6
8
9

10
13
15
26
4S

109
209
405
984

1940

Varying sites only

2
3
3
4
5
6
7
8
9

U
13
16
28
50

116
222
431

1048
2067

Informative (clock)

—
4
5
5
5
6
6
7
8
9
9

13
17
27

The final column of Table I gives the 95% points of this quantity for various
numbers of "phylogenetically informative" sites.

The application of these numbers can be illustrated using the data of
Miyamoto et al (95). They examined 7100 sites of sequence, found 391 sites
that varied, of which 13 were phylogenetically informative, having 8, 3 and 2
sites, respectively, that favored human-chimp, chimp-goriila, and human-
gorilla clades. Using Table 1, we fmd that with 71(X) sites one would need to
have the best tree favored by about 1385 steps to be significantly better than
the next best. If we confme our attention to the 391 varying sites and use the
second column, the required differential in the number of steps drops to about
95. This still leaves the result wildly insignificant. However, if we are
allowed to assume a molecular clock, then we find that with 13 "phylogeneti-
cally informative" sites we need a differential of only 5 steps, exactly the
number found. This indicates that these data favor human-chimp by an
amount barely significant at the 95% level.

Another calculation could ask whether the number of sites favoring the best
tree is significantly greater than 1/3 (42). The result of 8 out of 13 does not
quite reach the 95% point, which is 9 sites. This is a different way of using the
same data and points out that it is not obvious which statistic to use.
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TEMPLETON'S PAIRWISE TEST Templeton (138) has used the same sort of
data differently. He asks, for two given trees, whether the data supports one
significantly more strongly than the other. Looking at the differences of
numbers of substitutions at each site, he does a Wilcoxon signed-ranks test of
the hypothesis that the sum of the number of substitutions is equal in the two
trees {which is the same as saying that the mean number of substitutions is
equal). For fewer than six species the number of substitutions per site cannot
differ by more than one per site. One can therefore simplify Templeton's test
by comparing the number of sites favoring the one tree with the number
favoring the other, and test these for departure from one half by a sign test (A.
Wilson, personal communication).

I have used the technique of enumerating all possible data outcomes in a
three-species case (45) to check whether Wilson's simplified version of
Templeton's test is conservative. It turned out that it was, provided that the
sign test is done as a two-tailed test, rather than one-tailed as Templeton had
recommended. This seems necessary because we do not know in advance
which tree is going to be best; even if we examine them and order them by
number of substitutions immediately before doing the test, that does not
change the necessity fordoing a two-tailed test. Applied to the Miyamoto et al
(95) data, we test the best two trees against each other, comparing the 8
characters supporting one to the 3 supporting the other. We find that 8 out of
11, on an expectation of 1/2 has a two-tailed value of P = 0.22, so that the
result is not significant. It should not be surprising that we get slightly
different results using different statistics. All seem to be telling us that these
data are near the level of significance but at most barely beyond it.

The advantage of Templeton's test, and Wilson's simplification of it, is that
it is not restricted to the three-species case. We can test any two trees against
each other to see which is significantly more strongly supported by the data.
The test does not construct a confidence interval—it simply tests two pre-
designated trees. If both are ill-supptirted by the data we may find ourselves in
the absurd position of proving that one bad tree is significantly worse than
another. Later we see some more recent developments of this test in the
direction of constructing confidence intervals. This family of tests has scarce-
ly ever been applied, but note that Holmquist et al(71) report that Prager &
Wilson have made use of the sign test in analyzing primate mitochondria]
sequence data.

SNEATH'S DISTANCE TRIADS Sneath (125) has developed formulas for
estimating variances and covariances of lengths of adjacent branches in trees
computed from sequence data. His methods use triples of reconstructed
branch lengths in the interior ofthe tree, computing their variances by several
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approximate methods. Although he has performed some simulation checks,
little is known about how accurate his methods will be or how they relate to
the tests mentioned above.

Distance Methods

F TESTS When the trees are generated by distance methods, we can some-
times use classical least squares methods to test hypotheses about them. 1 have
outlined (43) how to use least squares methods to test whether a tree assuming
a molecular clock fits the data better than one that does not assume it. The test
uses the F distribution and assumes that we have obtained the same tree
topology under both assumptions—in effect the test is that the branch lengths
satisfy the constraints imposed by a clock. Barry & Hartigan (3) have used a
similar approach to hominoid DNA hybridization data. Rohlf & Sokal (111)
have presented a closely similar test in a clustering context. The same test can
be used, in another variant, to find confidence limits on the length of any one
branch, or joint limits on the lengths ofany two branches. 1 have also argued
(46) that we can use the F test to conservatively test whether a tree topology
adjacent to the best one can be rejected. As the discussion of tests based on
likelihoods shows, it can be argued that this test is incorrect.

There is in any case a serious flaw in using the F test on distances derived
from sequence data. For such tests to be valid we must be able to assume that
the distances are statistically independent, which will essentially never be true
if they are derived from sequence data. A random change in a sequence will
affect the distance between that species and all others in the tree. For
example, a random change in the sequence of the ancestor of all primates will
affect the sequences of all primates and thus all the distances between
primates and nonprimates. Statistical fluctuations of distances from sequences
will not be independent. For this reason the F test is not useable for sequence
data (or for distances derived from restriction sites, restriction fragments, or
gene frequencies).

THE RELATIVE RATE TEST Sarich & Wilson (122, 123) introduced the
"relative rate test" which they used to investigate whether there has been a
change in the rate of evolution on one branch of a tree. An outside reference
species is used, and descendants of two sister lineages compared. For ex-
ample, we might use a baboon as outgroup and compare the gibbons with the
other apes. The objective is to see whether the baboon-gibbon distances are
different from the other baboon-ape distances. If the source of statistical error
in the distances is purely measurement error, arising independently in each
pairwise distance, then the test can be conducted. But when we have distances
derived from sequence data, in which individual substitution events cam affect
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many of the distances simultaneously, the values become correlated and
cannot be treated as statistically independent.

A substitution in the ancestor of the African apes (human, chimpanzee, and
gorilla), for example, will inflate the distances of all of these to the baboon.
They therefore cannot be treated as independent observations, as is implicit in
the relative rate test. It therefore seems that the relative rate test is sensitive to
the error structure in the data, and inappropriate for distances derived from
sequence data, unless greatly modified.

VARIANCES OF BRANCH LENGTHS Nei et al (103) have presented formulas
for computing variances and covariances of branch lengths in trees derived
from distance matrices, taking into account the variances and covariances of
the distances when those are generated from sequence data. Their methods
apply to purely clocklike trees, in which the times of forks are estimated by
averages of pairs of species whose last common ancestor was that fork. Their
formulas are closely related to those used by Chakraborty (12), although
different in methods of approximation. Nei et al state that their formulas
become tedious to compute when large numbers of species are involved. They
share this with Chakraborty's formulas, which compute all the variances and
covariances of hranch lengths, but only at the cost of constructing matrices of
size n(n-l)/2 by n(n-l)/2 and inverting some of them. For example, a study
with 15 species would require manipulation of matrices 105 x 105 in size.
Nevertheless, it is probably worthwhile to compute the variances and covari-
ances of branch lengths to get a clearer picture of the effect of statistical error
on the estimate of the tree.

The above approaches use distances that have been logarithmically trans-
formed so as to be approximately linear with time. A more sophisticated
approach would be to use the untransformed distances but allow them to
depend nonlinearly on time. This has been done by Hasegawa et al (64, 67)
who developed an interesting nonlinear distance matrix method specifically
adapted for distances from nucleotide sequences. They compute two dis-
tances, one from transition differences and one from transversion differences.
These depend nonlinearly on time, and they use nonlinear equation-solving
methods to find numerically the optimum branch lengths. They also present
formulas for the variances and covariances of these estimates. Like those of
Chakraborty (12) and Nei et al (103), these involve computations with large
matrices.

As yet no one has adapted any of these methods to the case where no
molecular clock can be assumed. This eould be done, although it might be so
much algebraic work that a bootstrap resampling approach would be easier
(see below).
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TEMPLETON'S DELTA-Q TEST Templelon (139) proposed a nonparametdc
method for distance matrix data to test whether one tree was significantly
more supported than another. He first replaced the table of pairwise distances
by their ranks, then derived a test statistic, delta-Q. from these. His method
and its application to published hominoid DNA hybridization data has been
criticized by Ruvolo & Smith (114), Saitou (115). and Fitch (57). and
defended by Templeton himself (140). The fundamental criticism is that, by
reducing the data to ranks, much ofthe statistical power in the original data
can be lost. For example, for four species even the cleanest data, analyzed by
the delta-Q method, is completely unable to discriminate between the true
phylogeny and any other. This lack of power is the price one often pays for
robustness when using nonparametric statistics—and it is too easily over-
looked.

The robustness gained is not total. For example, the test assumes that the
statistical variation of the distance values is independent. This may be true
witb DNA hybridization values but is certainly not true for distances derived
from sequences, as already mentioned. For that reason the delta-Q test would
need substantial revision to apply it to sequences.

Tests Based on Likelihood Methods

When we consider the likelihood "surface" that results from the likelihoods of
all possible trees (including all possible combinations of branch lengths),
tbere are two general approaches to assessing the statistical variability of the
results. For a given tree topology, we can use the curvatures of the likelihood
surface plotted as a function of branch lengths to compute approximate
variances and covariances of the branch lengths. One need only compute a
matrix of second derivatives for all pairs of branch lengths. The covariance
matrix of branch lengths is tbe negative of the inverse of this matrix. That is a
classical result in likelihood theory, but it is not quite as useful as it might
seem. The result is asymptotic, valid only for large amounts of data, which in
this case means very long sequences. In such a case there will be no ambiguity
as to the tree topology—tbe covariances can be used to set up a simultaneous
confidence interval on tbe branch lengths, with all the trees in the confidence
interval having the same topology.

The issue of testing alternative tree topologies against each other, or of
constructing a confidence interval that includes trees of more than one topolo-
gy, is complex. It is best to discuss first ihe use ofthe likelihood ratio in other,
simpler cases.

The likelihood ratio test (LRT) can be used to test whether some set of
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parameters in a model are restricted to given values. If we have a tree and
wish to test whether it is consistent with a molecular clock, for instance, that
amounts to the assertion that certain branch lengths and sums of branch
lengths must be equal. ln Figure 1, we can obtain a clocklike tree like the one
on the right by requiring that v, = V2, v^ = V5, and V3 = V4 + Vf, (the
requirement that Vi + Vs = Vj -f v̂  is not a restriction of parameters, since the
tree on the left does not constrain v-j and vg individually, as it is an unrooted
tree). This means that a tree of 7 parameters, the branch lengths of the tree on
the left, is constrained by the clockness assumption to have only 4 parameters,
Vi, i'4. I'ft. and v'7. In this case the LRT can be carried out: we find the best
trees with and without the constraint. Twice the logarithm of the ratio of their
likelihoods is (asymptotically) distributed under the null hypothesis of clock-
ness as a chi-square variable with 7 - 4 = 3 degrees of freedom. This test of
clockness is perhaps the most complete test possible, but it has not yet been
carded out on actual data. I have done such a test in the DNA hybridization
case (48), but not in the sequence case,

There are other cases in which the LRT is tiseable. When we wish to test
assertions about rates of evolution in different parts of a molecule, such as the
assertion that evolutionary rates arc different at the third codon position, we
could find the maximum likelihood trees under both hypotheses and take the
likelihood ratio. If, for example, we had one model in which all three codon
positions changed at the same rate, and another in which there was a different
rate parameter for the third position, the restrictive model constrains the two
parameters to be equal. The LRT would then be applicable witb one degree of
freedom.

8

Figure I Phylogenies without (left) and with (right) the assumption of a molecular clock. Next
to each branch of the trees is the branch length, which measures the expected amount of change,
the product of the expected rate of change and time. In the Uee on the right, the branch lengths are
constrained so that all tips are level. The molecular clock is tested by testing for these constraints.
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The LRT can also be used to improve on the confidence interval obtained
from the curvatures of the likelihood. The likelihood ratio between the
estimated tree and the true tree could be tested with a number of degrees of
freedom equal to the number of branches (2n~3 if there is no clock assumed
and there are n species). Thus by fmding the likelihood that would be barely
significant with this number of degrees of freedom, we can tell how far down
the likelihood surface we should allow ourselves to go to define a confidence
interval that would have a given chance of containing the true tree. This
interval would probably be a better approximation than the one obtained from
the curvatures, but it too is well-justified only when all trees in the interval
have the same topology.

The LRT is applicable when the more restrictive hypothesis is a subcase of
the less restrictive one, and when it is in the interior of the space defmed by
that hypothesis. In the third codon position example, the rate for the third
codon could be either higher or lower than that for the others, so that the
restrictive hypothesis is in the interior of the interval of possible rates. A
more serious problem is that the LRT's justification is asymptotic. Techni-
cally it can be guaranteed to be correct only for very long sequences. In
most cases statisticians ignore this requirement and hope that the LRT will
behave well with smaller data sets. The phylogeny problems are not
known to be any worse-behaved than others in this respect, but it would
be desirable to have some verification, perhaps by simulation, of the ade-
quacy of the LRT.

Testing different tree topologies against each other is much more difficult.
When we test whether a particular branch could be of length zero, this is
restricting a single parameter, and the LRT would have one degree of
freedom. But the branch length cannot be negative, so the null hypothesis is
on the boundary of the space, Owing to the continuity of the likelihood
function in the vicinity of the trifurcation, this probably does not create a
problem and we could still use the LRT (E. Thompson, personal communica-
tion). But when we wish to test one bifurcating tree topology against another,
these hypotheses are not nested one within the other and have the same
number of parameters. I have suggested in the case where the two topologies
are adjacent (that is, they each have a branch which, if its length is shrunk to
zero, results in the same trifurcation) that we could test one topology against
another conservatively by pretending that there was one degree of freedom. I
have used this test with DNA hybridization data (48).

Alan Templeton (personal communication) has pointed out that the logic I
used in that argument is flawed, as the distribution assumes implicitly that the
true tree has the trifurcation. whereas the intention is to use the test when it
does not. It is possible that the conservativeness of this practice could be
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proven, but at the moment the matter is not proven. Thus we are left with a
situation in which many interesting hypotheses can be tested by likelihood
methods, but altemative tree topologies cannot, at least without further work.
Since the confidence interval consists of those trees that cannot be rejected,
this also leaves open the question of how to construct a confidence interval.

APPLICATIONS AND EXTENSIONS Masami Hasegawa and his colleagues
(65, 66. 68) have applied maximum likelihood to mitochondria! and RNA
sequence data. They have used the approximate standard errors of branch
lengths and have reported differences in log-likelihood among topologies.
Ritland & Clegg (113) have applied likelihood analysis to a variety of
problems in plant phylogenetics. They have extensively tested different mod-
els of base change against each other and have tested equality of rates of
evolution in different regions of the genome, using the likelihood ratio test.
They were cautious about interpretation of likelihood ratio differences among
different tree topologies, turning to other methods (see below) when interpret-
ing these. Barry & Hartigan (3) have also compared likelihoods, using their
own models and allowing a different probabilistic process in each branch of
the tree, between different tree topologies for hominoid DNA sequence data.

QUALIFICATIONS The main limitation of likelihood methods is that they
require a precise parametric model of nucleotide (or amino acid) change. To
the extent that this model is inaccurate, the inference drawn by using it may be
wrong. Some authors, on hearing this point, bave concluded that likelihood
methods are particularly delicate. In fact, no such conclusion is justified. In
the case of likelihood methods the model is explicit—for most other methods
the model is implicit. Both kinds of method may be sensitive to violation of
the model—it is just that in likelihood methods the mode! is more visible.
There is no reason to believe that likelihood methods behave worse than
parsimony or distance methods on real data, even when the model is not
plausible.

That these models are not plausible should be apparent. Gillespie (62) has
been witheringly skeptical, on empirical grounds, of all existing stochastic
models of nucleotide sequence change. Heterogeneities of rate between dif-
ferent parts of the DNA are so extensive that it is impossible to believe in any
ofthe models employed in likelihood analyses. Given that, and the hopeless-
ness of fmding a general and tractable model, should we not abandon attempts
to use these highly parametric methods? We see below that we need not
abandon them and that they can be greatly strengthened by being combined
with empirical nonparametric methods.



PHYLOGENIES FROM SEQUENCES 547

Invariants

Closely related to likelihood metbods are methods using invariants. These are
functions calculated from the data that take one value for all trees of a given
topology, irrespective of their branch length. The impetus to investigate
invariants bas come from the realization that parsimony methods can be
inconsistent (as explained above) and that a method insensitive to branch
lengths would have considerable advantages. The three papers on this subject
are those of Cavender & Felsenstein (11) and Lake (87, 86). All investigate
four-species trees, the smallest ones that have nontrivial differences. Caven-
der (II) discovered functions of the expected frequencies of different types of
characters in a two-state case which were invariants, in the sense that they
would be zero on the true topology. The functions were quadratic, and it was
not easy to make a simple statistical method out of them. They were no longer
zero if evolutionary rates varied from character to character, for example.
What they did do was to express more explicitly what were the constraints on
the expected frequencies of character outcomes that corresponded to having a
tree of a given topology.

Lake (87, 86) found a different set of invariants with the property that they
were nonzero only for the true topology. Lake's invariants are for a four-state
case (modelling nucleotide sequences) and have the nice property of being
linear rather than quadratic. This endows tbem with properties that avoid the
problem of rate inequalities at different sites. If we consider four species and
take all sites that are comparable in all four, some of these will show (for the
four species, respectively) a pattem xxzz, where x and z are bases that differ
by a transversion (such as .v = A and z = 7). Some will be xyzz, where x and y
differ by a transition and z from both by a transversion, and some wiil be
xyzw, where x and _v differ by transversions from z and w. Many sites will, of
course, have other patterns such as xxxx, xxxy, xzxz, etc. Letting P(xrzz) be
the fraction of sites which are expected to show pattem xxzz. and similarly for
the others, the invariant is

P(xxzz) + Pixyzw) - Pixyzz) ~ P(xxzw),

which can be shown, under a suitably symmetric model of base change, to be
nonzero for the tree topology ((A, B). (C. D)) and zero for the other two
possible topologies. This means that the fraction of sites showing one of the
pattems xxzz and xyzw should equal that showing one of the pattems xyzz and
xxzw. Lake's statistical technique is to test this by counting these pattems in
the data and doing a chi-square test of equality between these two classes of
sites (an exact binomial test would work as well). Lake has also presented
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(86) a method for estimating the lengths of the branches in the trees from
similar calculations.

The advantage of linear invariants such as Lake's is that they make the
inferences about tree topology in a way that is not sensitive to different branch
lengths or different rates of evolution at different sites. This is a great
advantage, but it is somewhat compromised by some disadvantages. The
model of base change under which Lake derives his results has some built-in
symmetries (when an adenine undergoes a transversion it must be equally
likely to end up as cytosine or a thymine, and similarly for the other three
bases) which may not reflect biological reality. It remains to be seen whether
the method can be corrected for departure from that assumption. Secondly, by
ignoring information from sites that do not have pattems such asxryz, xyzw,
and such, we inevitably lose some power. This is expected to be particulariy
pronounced in groups of closely related species, where iransversion differ-
ences may be infrequent. With enough data, the method could be used even
on fairly closely related species. Holmquist et al (72) have found Lake's
invariants useful in discriminating among phylogenies of the higher primates
using about 10 kb of sequence.

It is also not obvious how to extend the method to greater numbers of
species. Lake (87) used an approximation to incorporate information from
multiple sequences to ask whether a given interior node of a phylogeny exists.
The approximation seems very rough; there should be a better way of using
multispecics information.

Maximum likelihood methods do use information from multiple species
correctly. They also make full use of all positions—even the invariant posi-
tions contribute to the estimation of overall evolutionary rate. However, the
models employed may be unrealistic. The question of whether invariants are
to be preferred to likelihoods thus depends on whether the models that
underlie likelihood methods are likely to have broken down, without the
symmetry assumptions of invariants having broken down. The maner is a
subtle one and needs much further investigation.

THE BOOTSTRAP. THE JACKKNIFE, AND OTHER
RESAMPLING METHODS

The Bootstrap and The Jackknife
Resampling methods have become popular in statistics in recent years. These
involve using random sampling from one's own data to find out empirically
the variability in the estimator. These methods, notable jackknifes and boot-
straps, have been applied to phyiogenies only recently. They provide us with
a powerful way of escaping from some, if not all, of the restrictive assump-
tions of other methods. That is their great attraction—the conflicts between
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infonnation from different sites are assessed empirically. If different sites
conflict, this will be reflected in a wider confidence interval. Conflict that
goes well beyond what is expected under simple models of equal rates of
change at all sites can easily be accommodated. Nonindependence of change
at different sites cannot be so easily accommodated—in this respect these
methods are not particularly robust.

MUELLER AND AYALA'S JACKKNIFE METHOD Mueller & Ayala (IOO)
used the jackknife method to test the reality of a branch in a phylogeny, using
gene frequency data. Their methods could be generalized easily to trees
computed from sequences by distance methods. The jackknife is a resampling
method in which one data point at a time is dropped. The estimate (in this case
a branch length) is recomputed from the data left after the point is dropped. In
Mueller & Ayala's case the points were loci; in sequence data they would be
sites. Usually one drops all the sites in tum, but if the number of sites is large
one could altematively drop a random sample of sites, one at a time.

The collection of resulting estimates of the particular branch length are to
be examined to see whether there is evidence that the branch length is greater
than zero. It is important to realize that dropping one site will have a very
small effect on the estimate, far smaller than the typical effect of sampling
variability. In fact, we know how much smaller. If there are n sites, then the
perturbation of the estimate by adding or dropping one site will typically be
1/n as large as the perturbation obtained by taking a completely new sample.
In using the jackknife we compute "pseudovalues" of the estimate by taking
the change in the estimate and extrapolating it by multiplying it by n. This is
often left unclear because the formulas for the variance of the estimate
incorporate the extrapolation factor without comment.

Mueller & Ayala drop one locus at a time and compute the variance of the
pseudovalues (which have been extrapolated). They then want to use these to
compute the variance of the branch length, where the branch length is
obtained from a UPGMA clustering from the distance matrix. They give
methods of taking into account the covariances of the distances with each
other, using the linearity of the relationship between branch lengths and
distances.

For phylogenies inferred by distance methods from sequence data, one
need not use all of Mueller & Ayala s formulas. One could proceed more
simply by dropping one site at a time, recomputing the distance matrix in each
case, estimating the phylogeny from the resulting matrix, and recording the
length of the branch of interest, lf B is the branch length with all sites in the
data and fl' the estimate after dropping one site, the pseudovalue for the
branch length is

S = n B - (n-\) fi' (1)
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which is the result of an n-fold extrapolation of the effect of dropping the one
site since it can be rewritten as:

5 = « (fl - fl') -h fi' (2)

which amounts to an n-fold extrapolation of the effect of adding the site. Note
that this is the effect of adding, not dropping the site; the extrapolation is in
the opposite direction from the effect of dropping the site. To test the reality
of the branch we need to test whether the mean of the pseudovalues is
significantly different from zero. This could be done by a /-test or simply by
seeing whether 95% of the pseudovalues are positive. Mueller & Ayala use
some approximations involving gamma distributions that are special to the
case of genetic distances. Their technique has not been applied to sequence
data yet, but it is closely related to the bootstrap, which is used in a similar
way.

LANYON'S JACKKNIFE Lanyon (88) has presented a completely different
jackknife method for use with distance matrix data. Instead of dropping one
site at a time, he drops one species at a time, A tree is constructed from the
resulting reduced distance matrix. A group found in the original tree is
regarded as confirmed if it shows up (with the exception, perhaps, of the
species that has been dropped) in all of the resulting trees.

The difficulty with using Lanyon's method is that its statistical properties
are completely unknown. The method is an exploratory tool for "'distinguish-
ing stable from unstable portions of phylogenetic trees" (88). but it is not a
truly statistical method. The reason is that the entities sampled, species, are
not independent. Their nonindependence results from evolution, from the
existence of a phylogeny, and is the very fact we wish to study. Jackknifes
and other resampling techniques usually assume that the data points are
independently drawn from some distribution, an assumption that is not valid if
species are the units of resampling.

Lanyon does not claim that his method can be used to create a confidence
limit or test trees. There is no connection made in his paper between the
assessment of whether a group is "stable" or "unstable" and any judgment of
its statistical significance. This limits the technique to the status of a nonstatis-
tical exploratory tool.

THE BOOTSTRAP I have (44) applied the bootstrap method of resampling
(19, 20, 21) to phylogenies in a way parallel to Mueller and Ayala's use of the
jackknife. The bootstrap dictates that we resample the data set by drawing
points from it with replacement, until we get a data set ofthe same size as the
original. Usually some points are sampled several times, othera left out. The
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estimates made from the resampled data set need not be extrapolated in any
way. A confidence limit on any quantity can be constructed by the "percentile
method" of simply discarding (for example) the upper and lower 2.5% of the
distribution of that quantity to obtain a 95% bootstrap confidence limit.

The bootstrap assumes, as does the jackknife. that the points are in-
dependent and identically distributed. As with the Mueller and Ayala jack-
knife, the sites are used as the entities to be resampled, under the assumption
that they can be regarded as independently evolved on the same phylogeny.
When a site is chosen to be included, it is copied into the resampled data set,
keeping the nucleotides associated with the same species. The species are not
resampled in any way—all of them are included in the resampled data set.

The other choice, in addition to the method of resampling, is the quantity to
be examined. A phylogeny is a complex multivariate entity with many
discrete and continuous features, not just a simple number on a scale, lt is not
at all obvious how to take the cloud of estimates of the phylogeny, one or
more for each bootstrap sample data set, and produce from them a confidence
interval.

The method I have used is to assume that there is some particular group (set
of species) in which we have declared a prior interest. For example, we may
wish to know whether the monophytetic group {human, chimpanzee) is on the
true phyiogeny. We look among all the bootstrap estimates of the tree, and
count what fraction this group is monophyletic. In effect, we are interested in
a 0-1 variable which indicates the presence or absence ofthe group. If 95% or
more of the trees have the group present, then the 95% bootstrap confidence
interval on the 0-1 variable contains only Vs, so that we can declare the group
significantly supported.

The easy way to fmd such groups is to take all the bootstrap estimates and
construct a majority-rule consensus tree (94). This is a tree with all those
groups that show up in more than half of the bootstrap estimates of the tree, lt
will therefore contain all groups that occur 95% ofthe time. The difficulty is
that we may then declare all of them significant, tantamount to deciding after
the fact which hypotheses we were interested in testing. It leads us to a
multiple-tests problem. Among every 20 groups we might examine, one
should be declared significant at the 95% level by this procedure, even if none
are actually on the true phylogeny. When we examine only groups that have
shown up at least once in a bootstrap estimate ofthe phylogeny, the chance of
a spurious significance is even greater.

Thus we must either declare in advance which group we are looking for, or
we must apply some correction for multiple tests. The proper multiple-tests
correction has not yet been discovered. With n species there are 2"-l possible
groups, and we may be interested in deciding whether each of them is
significantly supported. For that matter, we may also be interested in whether
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each of them is significantly opposed. If a group of prior interest is absent
from 95% ofthe trees, it can be declared significantly opposed. Aitematively,
we can use the upper and lower 2.5% points of the 0-1 variable, indicating
presence or absence of the group to test in such a way that we can detect either
the significant presence or the significant absence of a group. Again, this is
subject to the multiple-tests problem if the group is not decided on in advance.

THE DELETE-HALF JACKKNIFE A resampling method similar to the boot-
strap is to take a random half of the sites. This is a kind of jackknife in which,
instead of dropping one character, we drop half of them. It is one of a family
of jackknife methods advocated by Wu (143) for use in regression problems
and has the advantage over other jackknife methods of not using any ex-
trapolation factor. If one parameter is being estimated, there is no extrapola-
tion at all—the variation between estimates from random halves of the data
should be typical of the sampling variation of the estimate. The matter of how
many parameters are actually being estimated is a complex one. If k parame-
ters are being estimated, we are supposed to choose samples of size (n + k-
l)/2 to avoid extrapolation (143). However, if n is large, samples of size rt/2
will be close to the correct size for any modest value of k.

I had also pointed out (44). much more crudely, that a jackknife with
random halves would have this property. Like the bootstrap, it can be used to
construct a confidence interval by the percentile method. The only investiga-
tion yet is Penny & Hendy's (110) empirical study using an actual data set, in
which the delete-half jackknife (which they call "haltlings" or the "method of
Hobbits") shows about the same performance as the jackknife. it would be
interesting to know under what conditions the one method is to be preferred.

PENNY & HENDY'S RESAMPLING METHOD Penny & Hendy (110) have
used resampling methods, jackknifes and b<K)tstraps, to show for a given data
set how many characters would be needed to have the estimate accurately
reflect the true tree. In the six protein molecules they used in different
mammalian orders, there were 166 reconstructed "phylogenetically in-
formative" nucleotide sites. They have resampled subsets of sites of various
sizes, including bootstrap samples and jackknifes that delete various numbers
of sites. They estimated trees (by parsimony or various kinds of weighted
parsimony) for each resampled data set, without engaging in any extrapola-
tion. They used a distance measure between trees, the partition metric, which
measures the number of subsets of species that are different between the two
trees. For the jackknifes they took nonoverlapping subsets of various sizes (up
to half the sites) and measured the difference between the resulting trees.
Extrapolating the results, they could show that about twice as many sites
would have to be in the analysis for it to be reasonably likely that the most
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parsimonious trees from different subsets be identical. One of the main
objectives of their paper was to test various methods for weighting sites. They
found that when positions were given less weight when they conflicted with
others, the results were more reliable.

In effect Penny & Hendy were using the resampled data sets as an experi-
ment on the statistical variability of resampling methods and to see how
accuracy of estimation of trees was related to the number of informative sites.
Their results give us a feel for the sizes of confidence intervals to be expected
from different amounts of sequence, although they did not indicate how to
extrapolate them to other groups of species, nor did they actually present a
confidence interval on their estimate of the tree.

INTERVALS BASED ON PAIRED COMPARISONS OF SITES Templeton'S
(138) paired sites test has already been described. One might wonder whether
it could be used to construct a confidence interval. Could one take all trees
that fail to be significantly worse than the most parsimonious one, and call
those a confidence interval? Since these tests are of different hypotheses, it is
not obvious how to correct for the multiplicity of tests or the fact that some of
them are of closely related hypotheses (if we reject tree T from the confidence
interval, this is nearly the same test as the one that examines a closely similar
tree). It seems that the naive procedure of taking all trees that do not fail the
pairwise test could not possibly be valid. And yet there is some indication that
it may be.

H. Kishino & M. Hasegawa (in preparation) have presented a variant on
Templeton's test that uses likelihoods. They examine differences, site by site,
between log likelihoods. They are then able to construct, from a Bayesian
approach, an argument that an interval containing 95% of the posterior
probability is found by taking, in effect, all trees that are not rejected
compared to the maximum likelihood tree. This is not quite the same thing as
a confidence interval, but it is related to it. They note that the same argument
would apply to parsimony, using the Templeton test.

The difficulty with this method of constructing a confidence interval, apart
from the question of whether it really is a confidence interval, is that one must
examine trees one at a time to see whether they are rejected from the interval.
This is a large computational task, although competing methods such as
bootstraps are also computationally intensive.

SIMULATION STUDIES

Closely related to resampling is simulation. In fact, one bootstrap method, the
"parametric bootstrap" (22) consists simply of taking the best estimate of the
tree, simulating new data sets of the same size by evolution occurring along
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that tree under the postulated model, and then using the variability among
estimated trees from those simulated data sets to assess how much variability
there was in the original estimate. This is one of the best uses of simulation,
and should be done more frequently. It is not often done, partly because we
may doubt that we have an accurate enough picture of the stochastic processes
which bring about the data, but mostiy because the potential users are
intimidated by the complexities of computer simulation.

Most computer simulation studies have a different aim. They use simula-
tion to test competing methods to see which does a better job of estimating the
true tree. The problem common to such studies is uncertainty whether the
results will continue to apply when the true tree is of a different shape or depth
in time, the data set of a different size, or the model of evolutionary change
different. Nevertheless, there is enough consistency among results to make
comparisons interesting.

Many of the simulations carried out so far have been for gene frequency
data rather than sequence data. These include those of Kidd & Cavalli-Sforza
(78). Kidd et al (79) and Astolfi et al (1), Nei et al (101), Rohlf & Wooten
(112) and Kim & Burgman (80). Others such as Fiala & Sokal (50) and Sokal
(130, 131, 132) have modelled discrete morphological characters. Many of
the patterns found in simulations of molecular sequences also are found in
these simulations.

Simulations modelling molecular sequence data include the papers of
Peacock & Boulter (109), Tateno et al (135), Blanken et al (5), Hasegawa &
Yano (66), Tateno & Tajima (136a) Li et al (93), Sourdis & Krimbas (133),
Sourdis&Nei(134),andSaitou (117). It is hard to come away from a reading
of these papers with a clear overall consensus as to whether distance matrix or
parsimony methods are better (none tested likelihood methods against these
other two kinds). Peacock & Boulter (109) suggested that parsimony was
better when sequences were little diverged, distance matrix methods better
when divergence was more ancient. Sourdis & Nei (134) found a similar
pattern. Blanken et al (5) found little difference between these methods. The
gene frequency simulations cannot be compared readily to the nucleotide
sequence simulations for this purpose. The simulations of discrete morpho-
logical characters can. Only that of Sokal (130). in which the organisms were
not actually simulated but were "evolved" on paper by a biologist, can be
directly compared: it had a moderate degree of divergence (as judged by
changes per character) and was better estimated by parsimony than by the
UPGMA distance matrix method.

There is one pattern, predicted by theory, that is found to be fairly clear in
the simulations, though rarely commented on by the authors. This is the
inconsistency of UPGMA clustering methods when rates of evolution in
different lineages depart sufficiently from a clock. As noted above in the
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discussion of distance matrix methods, UPGMA (average linkage) or other
clustering methods can be inconsistent when we are not close to a clock.
Examination of the conditions for this to happen in simple cases (42) show
that UPGMA will fail considerably more readily than will parsimony, requir-
ing only differences in rate between lineages of about a factor of two before it
is expected to misbehave. Parsimony will be inconsistent when rates vary
more extremely (although it will also fail, as Hendy & Penny (69) have
discovered, in some clocklike cases where clustering methods will not).
Distance matrix methods in which distances are properly transformed to
reflect estimated divergence times and maximum likelihood methods are
among those not expected to show the inconsistency.

Some of the simulation studies were conducted with a molecular clock
assumed, others without. For this purpose we can compare the gene frequen-
cy, discrete morphological character, and nucleic acid simulations—any one
in which a clustering method was compared to either a parsimony or a
distance method. UPGMA was found to perform well in the ciockiike sim-
ulations of Tateno et al (135), Nei et al (101), and Tateno & Tajima (136a).
Fiala & Sokal (50) had an intermediate degree of rate variation, and found
clustering to have mediocre performance. The studies in which rates varied
considerably from a clock found clustering to perform badly, as expected.
These include the studies of Blanken et al (5), Sokal (130). Sourdis &
Krimbas (133), and Kim & Burgman (80).

The failure of parsimony to be consistent wben rates vary is also seen when
looked for. Hasegawa & Yano (66) used simulation to check the analytic
results on inconsistency of parsimony for four species, and they found that
parsimony did in fact fail in cases when likelihood did not. Kim & Burgman
(80) carried out a similar test for gene frequency data and again clearly
confirmed the expected misbehavior of parsimony methods. What is less clear
is whether the weakness of parsimony methods when compared to distance
matrix methods, for example in the studies of Sourdis & Nei (134), is a
consequence of the inconsistency of parsimony. When cases with fewer or
more sites are compared, one gets the impression that adding sites is helping
parsimony methods less than it helps distance methods in identifying the
correct tree.

Maximum likelihood and Lake's method of invariants have as yet received
fewer simulation tests than the parsimony or distance methods. As mentioned
above, Kim & Burgman (80) and Hasegawa & Yano (66) found it to converge
on the correct tree when parsimony methods did not. Astolfi et al (I) found
maximum likelihood to perform only moderately well for their gene frequen-
cy simulations. Rohlf & Wooten (112) found likelihood to become better than
other methods when the number of loci simulated was large. Saitou (117)
found that maximum likelihood with sequence data (for a small number of
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species, with or without a molecular clock) had a lower probability of finding
the correct tree than did a properly transformed distance matrix method. Since
for sufficiently large amounts of data maximum likelihood should be more
efficient than other methods, it will be interesting to see whether this low
efficiency for intermediate amounts of data can he confirmed as a general
property.

Li et al (93) found that Lake's method of invariants continued to select the
correct tree when inequalities of branch lengths caused hoth parsimony
methods and Saitou & Nei's (116) "neighbor joining" distance matrix method
to be misled by inequalities of rates. (The distance matrix method was misled
because the distances used were not transformed to correct for multiple
changes). One would expect maximum likelihood methods to share this good
behavior, and also distance matrix methods in which the distances were
properly transformed.

AN OVERVIEW

This survey of methods for inferring phylogenies and assessing their reliabil-
ity shows that the field is in an incomplete but interesting state. We have a
number of different approaches: parsimony, distance matrix methods, and
likelihood methods. The assumptions inherent in these methods are only
sketchily known—we have hints but little in the way of comprehensive proofs
that particular assumptions are required. It is clear from the failings of
different methods in particular cases that they all have assumptions; no
method allows one to make inferences about evolutionary patterns in a
well-justified way without making any assumptions about evolutionary pro-
cesses.

When it comes to assessing the reliability of the estimated phylogenies, we
have only fragments of methods, each with many properties unknown. Parsi-
mony methods can he inconsistent under a relatively unknown set of circum-
stances, of which we have only some hints. Distance matrix methods assume
that we know how to transform the distances so that branch lengths are
additive in expected distance. Maximum likelihood methods require
specification of the probabilistic model of evolution, and it is not known how
sensitive they might be to violations of the model, and how likelihood ratio
tests can be performed to distinguish among tree topologies.

In the last few years a variety of quasi-empirical methods have been
proposed for assessing the reliability of phylogenies. such as the jackknife,
the bootstrap, and Templeton's pairwise test. Simulation methods are also
available for the energetic. However, we have only the faintest notion of how
well-behaved and how powerful these tests are.
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FUTURE DIRECTIONS

While much remains to be done to complete the above picture, there are also
related problems thai have received only limited exploration. Two of these
deserve particular attention. One is the integration of sequence alignment with
phylogenetic inference, the other the integration of population-level processes
with phylogenetic inference.

We have already mentioned the first of these, for which approaches have
been pioneered by Sankoff et al (118), Sankoff (119), and Sankoff & Rous-
seau (120). Feng & Doolittle (49) have also recognized the need for a close
relationship between sequence alignment and phylogenies. Of particular inter-
est is the attempt by Bishop & Thompson (4) to place sequence alignment and
phylogeny estimation both in a likelihood framework. In their case there were
only two sequences, so that the phylogeny estimation reduced simply to
estimation of the time of divergence between the sequences. In principle the
approach of Sankoff & Cedergren (121) could be carried out using likelihood
instead of parsimony, although the computational problems would be ex-
treme. These computational problems have tended to divert attention from
this approach. Even if it can never be made practical, it is important to
consider, if only to gain perspective on what a complete integration of
phylogeny estimation with alignment would look like. Overconcentration on
practicality of methods has probably resulted in underestimation of the im-
portance of these papers.

The second problem requires some further explanation. When we infer a
tree by consideration of the sequence of one molecule, we are estimating the
genealogy of the particular copies of the molecule that were sequenced (see
the discussion by Nei (I()4) who calls this a gene tree). When the time scale is
fairly long there will usually be no discrepancy between the genealogies of
molecules and phylogenies of populations. It does not matter which individual
crow, alligator, or mouse we choose—if we sequence cytochromes from any
individual in each of three species, the genealogy of the genes should have
the crow and alligator copies more recently descended from a common an-
cestor than either is from the mouse. One would gain little in the infer-
ence by sequencing other copies of this gene from any of these three pop-
ulations.

When we work closer to the pjopulation level, matters become different. As
Gillespie & Langley (58). Tajima (136). and Hudson (73) have emphasized,
genes from different species, if traced backwards in time, both have ancestor
copies in the population at the moment of speciation. But those copies are
most likely not the same. We must trace back a further period of time, of
average length 2A',. generations, before we find that these copies have
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a common ancestor. A'̂  is the effective population size (for mitochondrial
genomes the figure is instead N^f, the effective number of females).

The result is that the genealogy of gene copies may actually differ from the
phylogeny of the species. If we lake my mitochondrion, yours, and a chim-
panzee's, it may well be that when human and chimpanzee speciated, all three
mitochondrial lineages were distinct. As we go back before that any two of
the three might equally likely be the first to join—say mine and the chimpan-
zee's. Avise et al (2) have reviewed the problems that this "lineage sorting"
creates when inferring geographic structure of species from mitochondrial
genealogies.

There are two ways to correct for this random perturbation of the trees. One
is to use more molecules, particularly those not closely linked to each other.
One of my hemoglobin-^ genes, one of yours, and a chimpanzee's may show
a different genealogy than do the mitochondria. By collecting sequences from
many loci, we should find that my gene copy and yours are more frequently
sister lineages on the genealogy of gene copies than either of us is to the
chimpanzee, thus indicating that our ancestors were in the same population
for a time after the chimpanzee lineage split off. At the moment we totally
lack a quantitative methodology for analyzing data like this—for reconstruct-
ing the phylogeny of populations, given a collection of sequences in which
different loci arc represented. Our interest is not in the genealogy of gene
copies itself, but in the pattern of relatedness of populations. The relevant
methods have not been developed mostly because this kind of data has only
recently begun to be collected.

The other method of inferring the population phylogeny is to take multiple
samples of the same locus from each population. This, in effect, is what Cann
et al (7) did with mitochondrial DNA. They were able to see patterns in the
genealogy of gene copies that suggested past population-level events such as a
postulated bottleneck in the human species as it spread from Africa to the rest
of the world. However, the phylogenetic methods they used were only able to
estimate the genealogy of gene copies: the inferences about populations were
made by infonnal and intuitive methods, there being no methods available for
making them numerically. This is unfortunate—one would like to be able to
make statistical statements about the reality and timing of the inferred bot-
tleneck. Here again, there is a serious need for the development of methods, a
need that has not been addressed mostly because the relevant data is only now
being coUected.

One can imagine how the inference could be done if practical com-
putational considerations were not a barrier. Suppose that we want to evaluate
a phylogeny of populations, where that phylogeny specifies not only times of
splitting of populations, but effective population sizes as well. We have a
series of loci, assumed unlinked, and for each a population sample of se-



PHYLOGENIES FROM SEQUENCES 559

quences. One can, in principle, use the phylogeny, T, to place a prior
distribution on each possible genealogy of gene copies, G (where G specifies
the exact times of splitting of lineages). Given the genealogy of gene copies,
one can compute the likelihood of the data D, which is Prob(D,G), the
probability of D given G. The overall likelihood is Prob{D.T), the probability
of the data given the phylogeny. This is the weighted sum over all possible
genealogies of gene copies that could be generated by that phylogeny:

Prob(D; T) = ^ Prob(G; T) Prob(D; G), (3)
G

the summation running over al! possible genealogies of gene copies. The
probabilities of the genealogies under the given phylogeny is obtained by
consideration of the mathematics of genetic drift—the process in each popula-
tion is the "coalescent" process of Kingman (83, 84), for a review of which
see Tavare (137).

This idealized approach is not practical. The number of possible genealo-
gies over which the likelihood must be summed is so great that there will have
to be some breakthrough for it to be used. We would need either a major
algebraic simplification, a major advance in computational methods, or an
approximation that enabled much of the computation to be avoided. Neverthe-
less, the above formulation is important in giving us a clear picture of the
inference problem and the most general form of solving it. Likelihood for-
mulations frequently have this benefit even when they cannot be used in
practice. Padmadisastra (108) has made calculations relevant to the parallel
problem of inferring phytogenies from models of neutral alleles. The density
of the mathematics in that paper, which treats the case of three populations,
will be some indication of the long road ahead in the sequences case.

Of course, I have been assuming that there is a phylogeny of populations.
When the populations are members of different species, this is un-
controversial. But when they are drawn from the same species, it is far from
obvious that the genealogy of the populations is treelike. Migration creates
loops in the tree, and in the extreme the genealogy no longer looks at all
treelike, but instead takes on the form of the migration pattern among
populations. I have outlined elsewhere (40) the difficult and unsolved in-
ference problems that arise when we try to use gene frequency data to
distinguish between treelike historical patterns of branching and nearly
treelike patterns of migration among populations. In the years since that paper
was published scarcely any advances have occurred in our understanding of
this problem.

When we use sequence data the problem is at least as complex, but the data
may have more power to discriminate among patterns of migration and
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inheritance than do gene frequencies. I hope that there will be some attempts
to address this problem before we are overwhelmed by data.

Another complication that arises with intraspecific data is recombination.
When two loci arc unlinked, one may approximate Iheir behavior by saying
that the genealogies of gene copies at the two loci are completely in-
dependently drawn from the set of possible genealogies within that popula-
tion. When two sites are linked tightly, they follow the same genealogy.
When the linkage is incomplete, they may follow the same genealogy in part,
and in part different ones. The problems that this causes for inferring the
genealogy have only begun to be addressed. It is naive to think that by
constructing genealogies for different parts of a molecule we will simply be
able to see all recombination events. Hudson & Kaplan (74) have discussed
problems of inferring the number of recombination events in the ancestry of a
sample, and they find that many recombination events will leave no trace.

In spite of all these difficulties, sequence samples of multiple loci from
populations provide us with the most powerful data sets for looking at events
in the past, giving us ways of detecting hybridization between species, and
possibly even allowing us to see events in the speciation process itself.
Whether this prospect can be realized will depend on whether the appropriate
methods of analysis can be developed. The sequence data is beginning to pour
in. It is just a matter of taking seriously the task of analyzing it.
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