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Summary

Biomineralization is a widely dispersed and highly regulated

but poorly understood process by which organisms precip-
itate minerals from a wide variety of elements [1]. For many

years, it has been hypothesized that the biological precipita-
tion of carbonates is catalyzed by and organized on an

extracellular organic matrix containing a suite of proteins,
lipids, and polysaccharides [2, 3]. The structures of these

molecules, their evolutionary history, and the biophysical
mechanisms responsible for calcification remain enigmatic.

Despite the recognition thatmineralized tissues contain pro-
teins that are unusually rich in aspartic and glutamic acids

[4–6], the role of these proteins in biomineralization remains
elusive [5, 6]. Here we report, for the first time, the identifica-

tion, cloning, amino acid sequence, and characterization of

four highly acidic proteins, derived fromexpressionof genes
obtained from the commonstony coral,Stylophora pistillata.

Each of these four proteins can spontaneously catalyze the
precipitation of calcium carbonate in vitro. Our results

demonstrate that coral acid-rich proteins (CARPs) not only
bind Ca2+ stoichiometrically but also precipitate aragonite

in vitro in seawater at pH 8.2 and 7.6, via an electrostatic
interaction with protons on bicarbonate anions. Phyloge-

netic analysis suggests that at least one of the CARPs arose
from a gene fusion. Similar, highly acidic proteins appear to

have evolved several times independently in metazoans
through convergence. Based purely on thermodynamic

grounds, the predicted change in surface ocean pH in the
next decades would appear to have minimal effect on the ca-

pacity of these acid-rich proteins to precipitate carbonates.

Results and Discussion

Despite the broad interest in coral calcification and the poten-
tial for climate-driven adverse effects, the molecules and
biophysical mechanism responsible for the precipitation of
carbonates in corals are poorly understood. To date, we lack
both a characterization of molecules involved in calcification
and a mechanistic understanding of processes that lead to
and control calcification. This lack of knowledge limits our abil-
ity to predict the response of corals to increasing atmospheric
CO2.
*Correspondence: falko@marine.rutgers.edu
To date, the best-characterized highly acidic proteins that
catalyze the precipitation of carbonates are from mollusk
shells and an echinoderm [4, 7–9]. However, in spite of the
fact that stony corals are among the most abundant bio-
mineralizing metazoans on Earth, surprisingly little is known
about their skeletal organic matrix (SOM) proteins or how
they regulate crystal formation. Furthermore, despite the fact
that the amino acid composition of coral SOMproteins is char-
acterized by a predominance of acidic amino acids [6, 10, 11],
the only coral SOM protein fully characterized, i.e., galaxin,
which is isolated from the stony coral Galaxea fascicularis,
possesses neither acidic regions nor obvious Ca2+-binding
domains [12]. Recently, Drake et al. [13] identified 36 SOMpro-
teins from a stony coral, of which two are highly acidic. They
suggested, however, that their approach, based on liquid
chromatography-tandem mass spectrometry (LC-MS/MS)
protein sequencing, might not be the most efficient method
for identifying these molecules, due to highly redundant se-
quences. Although a number of N-terminal SOM protein se-
quences have been reported both in scleratinian and alcyonian
corals, none of these share strong sequence similarity to other
known proteins or to each other, and only one exhibits a highly
acidic sequence [14–16]. A group of hypothetical, soluble
acidic proteins (SAPs) has been identified in the Acropora dig-
itifera genome, a transcriptome from A. millepora, and in ex-
pressed sequence tag (EST) libraries [17, 18]; however, the
role of these hypothetical proteins in calcification was not
examined, and the structure of the encoded genes was not
validated using RT-PCR.
To better characterize the proteins responsible for coral

calcification, we generated a draft genome assembly from
the cnidarian host cells of the Indo-Pacific stony coral,
Stylophora pistillata (see Supplemental Experimental Proce-
dures available online). In combination with transcriptomic
data from EST libraries and RT-PCR, we identified and charac-
terized four coral acid-rich proteins (CARPs 1–4; GenBank
accession numbers KC148537–KC148539 and KC493647)
(Figure S1 and Table S1). Three of these, CARPs 1–3, contain
a secretory signal peptide, suggesting that they are dis-
charged from the cells. CARP1 also contains an EF hand
Ca2+-binding domain. CARPs 2 and 3 contain an isoleucine-
proline-valine (IPV)-like motif following the signal peptide
that has previously been suggested to assist in the trafficking
of secreted, acidic, calcium-binding proteins out of the rough
endoplasmic reticulum in metazoans [19] (Figure S1). An addi-
tional gene encodes a protein, CARP4, which lacks a targeting
sequence but contains regions that have previously been iden-
tified in proteins extracted from the S. pistillata aragonite skel-
etal matrix [13, 14] and is therefore highly likely to be a compo-
nent of the SOM. The calculated isoelectric points (pI) of
CARPs 1–4 are 4.23, 4.78, 3.04, and 3.99, respectively (Table
S1). Isolated SOMproteins from corals and other marine inver-
tebrates are often posttranslationally modified [20, 21]; anal-
ysis of the amino acid sequence of the four CARPs reveals
several potential sites of posttranslational modification,
including phosphorylation and O- and N-glycosylation sites
(Figure S1). Indeed, glycoproteins were recently reported to
be present in the SOM of S. pistillata [13].
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Figure 1. Scanning Electron Microscope Images and Elemental Composition of CaCO3 Crystals Grown in Artificial Seawater

Scanning electron microscope (SEM) images and elemental composition of CaCO3 crystals grown in artificial seawater containing 0.1 mM of CARPs 1–4 at

pH 8.2 and 7.6 (A). In both pH treatments, a reticulate pattern is clearly visible (insets in A). EDS and SEM images (inset) of salts precipitated in protein-free

artificial seawater (B) and in artificial seawater containing BSA (C) confirm that calcium carbonate does not precipitate in the absence of CARPs. Elemental

composition of the crystals grown in artificial seawater containing CARPs 1–4 in both pH treatments reveal their calcium and carbonate composition (D). The

Au and Pd peaks derive from the gold coating of the sample, and the Si peak derives from the silica wafer base.
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To examine the effect of CARPs on CaCO3 precipitation,
we expressed and purified the acidic domain (excluding
the putative signal peptide) from CARPs 1 and 2 and the
entirety of CARPs 3 and 4. The recombinant His-tagged
proteins were visualized, and their identities were verified by
western blot analysis using polyclonal antibodies generated
against each recombinant protein (Figure S2). In addition, the
predicted amino acid composition of the pure proteins was
verified by high performance liquid chromatography (HPLC).
The molecular masses, estimated from SDS-PAGE for these
proteins, are slightly higher than predicted from their
sequences (14, 20, 18, and 37 kDa, respectively), probably
because of the high levels of negatively charged amino
acids [8].
To determine the stoichiometry of acidic residues involved

in binding calcium ions, we developed a 45Ca2+ assay, in which
20 mCi of the chloride salt of the radiotracer, diluted in 20mM 40

CaCl2, was overlaid on a polyvinylidene fluoride membrane
containing various dilutions of pure CARPs 1 and 3 (Supple-
mental Experimental Procedures). Ca2+ binds to CARPs 1–4
(Figure S2). Based on the binding affinity, we calculated the
molar ratio between acidic amino acid residues and Ca2+ in
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Figure 2. Evolutionary Analysis of the CARP1

Gene in Stylophora pistillata

(A) Genome region that encodes the CARP1

gene, showing the intron/exon structure, tran-

script coverage using mRNA-seq, and genome

coverage in the draft assembly. Note the strong

support for the N-terminal exon that encodes

the acidic domain (shown with the purple box).

The EF hand-encoding exons are shown with

the blue boxes.

(B) Maximum likelihood (RAxML) tree showing

the phylogenetic position of CARP1 among other

calumenin-related homologs in corals and other

taxa. The S. pistillata genes are in green text,

other corals are in red, sea anemone is in blue,

and other taxa are in black. RAxML bootstrap

values, when greater than 50%, are shown at

the nodes. Themonophyletic clade of coral genes

that contains the N-terminal extension is marked

by the vertical bar.
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CARPs 1 and 3 to be 1.6 and 2.5 with coefficients of determi-
nation of 0.98 and 0.91, respectively.

To assess whether the CARPs catalyze precipitation of
CaCO3, we conducted in vitro experiments in which the four
purified proteins were incubated in artificial seawater adjusted
to pH 8.2 and 7.6. Given the measured alkalinity of 2,221 and
2,114 mmol kg-1, the calculated Uarag for these conditions
was 4.15 and 1.27, respectively. These experiments were
designed to simulate contemporary and predicted pH condi-
tions in the upper ocean in the coming century [22]. In addition,
in vitro aragonite precipitation has been previously reported in
the presence of primary cell culture in enriched seawater [11].
Figure 1 shows Scanning electron microscope (SEM) images
of CaCO3 crystals grown in the presence of CARPs 1–4, at
pH 8.2 and 7.6. In all cases, a typical reticulate crystallization
pattern is visible at nanometer length scales (Figure 1, insets).
The mineral phases of biominerals, regardless of their origin,
always show a reticulate structure that is different from the
typical crystalline organization. This structure occurs due to
the presence of organic remains surrounding the crystallized
units [23]. In control experiments, either
with no addition of CARPs, with BSA, or
with His-tagged glycosyl hydrolase 2
(E. coli M863), only NaCl crystals were
observed (Figures 1B and 1C). The
chemical composition of the crystals
precipitated in the presence of CARPs,
determined by energy-dispersive X-ray
spectroscopy (EDS), confirmed that
they are calcium carbonate (Figure 1D).
A typical X-ray spectrum of the crystals
from each CARP treatment reveals a
similar elemental composition, as previ-
ously reported [11], with a sulfur peak in
addition to the prominent calcium and
carbon peaks (Figure 1D).

In order to identify the carbonate
mineral, we used both Feigl’s stain (Sup-
plemental Experimental Procedures)
and high-resolution inductively coupled
plasma mass spectrometry (ICP-MS).
The positive stain (Figure S2) and the
Sr/Ca ratio (7.83 6 1.53 mmol mol-1),
measured by ICP-MS, suggest that the crystals are indeed
aragonite, similar to the results of Helman et al. [24]. Although
the specific form of the carbonate mineral is not critical to the
role of CARPs in the precipitation process, the thermodynam-
ically favorable form is aragonite in modern seawater [25].
The wide distribution of calcification in protists and meta-

zoans [26] leads to the question of the evolutionary history of
this process. To address this question, we looked for putative
homologs of CARPs 1–4 in our comprehensive local database
derived from NCBI Reference Sequences (RefSeq) v51. This
database also included 13 genomes or EST data sets from bio-
mineralizing metazoans that are not in RefSeq (listed in Table
S2). The sequence comparisons showed that CARP1 is closely
related to two calumenin-related proteins widely distributed in
metazoans (Figure 2).
Analysis of the (noncalcifying) sea anemone Anemonia

viridis shows calumenin to be the most strongly upregulated
protein when symbiotic dinoflagellates (i.e., Symbiodinium
species) are present in animal cells [27]. In S. pistillata,
CARP1 is comprised of five exons, with the N-terminal exon
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Figure 3. Alignment of CARP1 and Coral Homologs Containing the Acidic Domain

Note the three blocks denoted by the black, red, and green asterisks, which represent the secretion signal, acidic domain, and EF hand domain, respectively.
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containing the acid-rich domain described above that is ab-
sent in other calumenin-related proteins. The second and third
exons encode the EF hand Ca2+-binding domain (Figure 2A)
and are similar to calumenin-related proteins. The exon-intron
structure of CARP1 is strongly supported by mRNA-seq data,
and independent assembly using transcriptome data recov-
ered the intact cDNA that includes the five exons shown in Fig-
ure 2A. Phylogenetic analysis of CARP1 (Figure 2B) reveals
that the N-terminal acid-rich domain is coral specific (Figures
2A and 3). The observation that neither calumenin nor other
related nonacidic Ca2+-binding proteins are known to take
part in the calcifying process, together with the fact that
CARP1 contains an N-terminal acid-rich domain capable of
precipitating CaCO3, is consistent with the idea that CARP1 re-
sults from a gene fusion. Fusion of EF hand domains to heter-
ologous genes, leading to novel functions, has been previously
observed (e.g., the NEFA and nucleobindin genes [28]) and,
in general, allows the translation of a regulatory signal (i.e.,
Ca2+-binding) to different functional responses [29]. These re-
sults demonstrate that CARP1, while widely dispersed among
metazoans, evolved independently [26] but converged in func-
tion to other metazoan calcifying proteins. The search also re-
vealed a high similarity of CARP2 (Figure 4A) and CARP4 (see
Figure S3 in Drake et al. [13]) only to other acidic scleractinian
proteins. The fact that CARP2 and CARP4 exhibit a high simi-
larity only to other acidic scleractinian proteins supports the
argument suggested by Drake et al. [13], that CARP4 and
potentially CARP2 belong to highly acidic subfamilies of
proteins that are well conserved across order Scleractinia.
Interestingly, CARP3 revealed high similarity both to acidic
scleractinian proteins and to the prismatic shell matrix protein
family of the bivalve Atrina rigida, Asprich [4] (Figure 4B).

The convergent sequence evolution of highly acidic proteins
in all calcium carbonate-precipitating organisms identified to
date suggests a common underlying mechanism for biominer-
alization. Calcium is an s block element that forms a metal-
ligand complex via coordinate bonds, typically with oxygen
atoms from carboxylates in either a bidentate or syn/anti
monodentate mode [30]. We propose that the acid-rich re-
gions in CARPs effectively localize calcium ions, thereby
increasing the ionic strength in the microenvironment and
leading to an increased local dielectric constant, which, in
turn, decreases the pKa of the microenvironment [31] (Fig-
ure S3A). The coordination bond strength of calcium with car-
boxylates is not as strong as for transitionmetals, such as zinc;
the carboxylates are readily replaced by a stronger Lewis base
[32]. The net negative charge on the oxygen atoms in the
carboxyl groups leads to electrostatic displacement of pro-
tons from bicarbonate anions, thereby allowing the precipita-
tion of inorganic carbonates on an organic scaffold [33]
(Figure S3A).
A b sheet conformation has been shown to accelerate

calcification [34], but acidic protein domains of CARPs 1–4
form neither a helices nor b sheets (Figure S3B). Indeed,
aspartic acid favors neither a helices nor b sheets but has
a relatively higher propensity to form aL conformational
states compared to other amino acid residues [35]. The elec-
trostatic interactions between calcium and acidic residues
may confer an aL conformation in a number of residues
of the experimentally determined acidic domains. For
example, in a catgrip Ca2+-binding motif, the backbone
residues have alternating aL and aR conformations, which is
a characteristic of an a sheet structure [36]. We propose
that calcium carbonate precipitation and its higher-order as-
sembly might be a consequence of a sheet-mediated protein
aggregation. This reaction is almost certainly controlled by
other, nonmineralizing proteins, such as collagens [13], which
help guide the arrangement of the crystals to achieve the
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Figure 4. Alignment of CARP2 with Coral Homologs and CARP3 with Coral and Bivalve Homologs

(A) Alignment of CARP2 with coral homologs.

(B) Alignment of CARP3 with coral and bivalve homologs.

Note the block denoted by the black and blue asterisks, which represent the secretion signal and the IPV-like motif, respectively.
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macroscopic architecture characteristic of each species
of coral.

Conclusions
Our research has identified and characterized four unique,
acidic proteins in corals that catalyze the precipitation of
CaCO3 in vitro and opens an approach not only for under-
standing how the process is controlled in vivo but also for
in vitro applications in novel biomaterials. The precipitation re-
action is likely to be driven by an electrostatic interaction of
Ca2+ ions with the carboxylate groups on the proteins, fol-
lowed by dehydration and precipitation of carbonate.Whereas
calcification is widely dispersed across metazoan phyla [26],
cnidarians (corals in particular) appear to be themost anciently
diverged extant phylumpossessing this trait [26]. To the extent
that the animal can buffer the reaction from the external pH of
the bulk fluid [37], the calculated pI values strongly suggest
that these proteins will continue to catalyze calcification reac-
tions at ocean pH values projected in the coming century,
assuming that the animals can physiologically acclimate
and/or genetically adapt to these changing conditions.

Experimental Procedures

DNA and RNA Purification and Complementary DNA Synthesis

Total genomic DNA that was free of cells from the dinoflagellate symbiont

Symbiodinium species was extracted from harvested cells using a blood
and cell culture DNA Mini Kit (QIAGEN) with small modifications. Total

RNA was extracted using TRIzol Reagent (Life Technologies) following the

manufacturer’s protocol with small modifications. Further details are

described in Supplemental Experimental Procedures.

Stylophora pistillata Draft Genome and Gene Model

Genomic DNA that was free of cells from the dinoflagellate symbiont

Symbiodinium species and total RNA were used to produce a draft genome

as well as transcriptome data using single-read and paired-end protocols

on an Illumina Genome Analyzer IIx. Further details are described in Supple-

mental Experimental Procedures.

45Ca2+ Overlay Assay

SDS-polyacrylamide gel was transferred to polyvinylidene fluoride (PVDF)

membranes. CARPs 1–4 and control proteins (glycosyl hydrolase 2 [E. coli

M863] and BSA) blotted on PVDF membrane were labeled with 45Ca, as

described previously [38]. Further details are described in Supplemental

Experimental Procedures.

In Vitro CaCO3 Precipitation

Calcium carbonate precipitation experiments were carried out by adding

0.1 mM of CARPs 1–4 to 1 ml of artificial seawater (Instant Ocean sea salt,

Aquarium Systems; salinity = 34). Further details are described in Supple-

mental Experimental Procedures.

Supplemental Information

Supplemental Information includes four figures, three tables, and Supple-

mental Experimental Procedures and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2013.05.007.

http://dx.doi.org/10.1016/j.cub.2013.05.007
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